
© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

LabWindows®/CVI
Instrument Driver Developers Guide

July 1996 Edition

Part Number 320684C-01

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
Lookout: lookout.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 95 800 010 0793,
Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate HeadquartersNational Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted
or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the
shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The
warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s
failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s modification
of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of
third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-DAQ®, NI-488.2™, and NI-488.2M™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE
OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on
the part of the user or application designer. Any use or application of National Instruments products for or
involving medical or clinical treatment must be performed by properly trained and qualified medical personnel, and
all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

©National Instruments Corporation v LabWindows/CVI Instrument Driver Guide

Table of Contents

About This Manual...xiii
Organization of This Manual ...xiii
Conventions Used in This Manual ...xiv
The LabWindows/CVI Documentation Set ...xv
Customer Communication ...xv

Chapter 1
Instrument Driver Overview ..1-1

About the Instrument Library and Instrument Drivers...1-1
How Users Operate the Instrument Driver...1-2
Purpose and Benefits of Instrument Drivers ..1-2
Historical Evolution of Instrument Drivers..1-3
Instrument Driver Architecture ..1-3

Instrument Driver External Interface Model ..1-4
Functional Body ...1-5
VISA I/O Interface ...1-5
Programmatic Developer Interface ..1-6
Interactive Developer Interface ..1-6

Instrument Driver Internal Design Model ..1-7
Component Functions ..1-7
Initialize Function ..1-8
Configuration Functions...1-8
Action/Status Functions ...1-9
Data Functions..1-9
Utility Functions...1-9
Close Function ...1-9

Application Functions ..1-9

Chapter 2
Developing an Instrument Driver...2-1

General Guidelines...2-1
Writing an Instrument Driver...2-1

Naming the Driver..2-2
Defining the Instrument Functions...2-2

Structuring Functions In An Instrument Driver2-3
Defining the Hierarchy of Functions..2-4

Defining the Function Parameters..2-4
Data Types..2-4

Predefined Data Types ...2-4

Contents

LabWindows/CVI Instrument Driver Guide vi ©National Instruments Corporation

Intrinsic C Data Types..2-5
Meta Data Types ..2-5

Numeric Array..2-6
Any Array...2-6
Any Type..2-6
Var Args ...2-7

User-Defined Data Types...2-7
Creating a User-Defined Data Type...2-7
User-Defined Array Data Types...2-8

VISA Data Types ...2-8
Input and Output Parameters..2-9
Return Values...2-10
Required Instrument Driver Functions...2-10
Building the Function Tree ..2-11
Building the Function Panels ...2-11
Writing the Function Code...2-11
Operating the Driver...2-11
Testing the Instrument Driver ..2-12
Documenting the Driver...2-12

Chapter 3
Function Tree Editor ...3-1

About the Function Tree and Function Tree Editor ...3-1
Function Tree Editor Menu Bar ...3-2

File..3-3
Edit ...3-3
Create ...3-4

Instrument...3-4
Class ...3-5

Adding a Class to an Empty Tree or Class...............................3-5
Inserting a Class into an Existing Tree.....................................3-5

Function Panel Window... ..3-5
Adding a Function to an Empty Tree or Class3-6
Inserting a Function into an Existing Tree3-6

Instrument...3-6
Load..3-7
Unload ..3-7
Edit ...3-8

Window ..3-9
Options ...3-9

Function Tree Editor Examples..3-11
Example—Multiple Classes in a Function Tree ..3-12
Example—Cutting and Pasting Functions and Panels3-13

Using Existing Function Panels In a New Driver3-14
Example—Editing Items in the Function Tree ..3-14

Contents

©National Instruments Corporation vii LabWindows/CVI Instrument Driver Guide

Chapter 4
Function Panel Editor ...4-1

Invoking the Function Panel Editor ...4-1
Invoking from the Function Tree Editor ..4-1
Invoking from a Function Panel...4-1

The Function Panel Editor Menu Bar ..4-2
File..4-3
Edit ...4-3

Cut Controls ...4-4
Copy Controls ..4-4
Paste ...4-4
Cut Panel ..4-4
Copy Panel ...4-4
Edit Control... ...4-4
Change Control Type ...4-5
Edit Function..4-5
Alignment...4-5
Align Horizontal Centers ...4-5
Distribution ..4-5
Distribute Vertical Centers...4-5
Control Help...4-6
Function Help or Window Help ...4-6

Create ...4-6
Function Panel Window, Function Panel, and Common
Control Panel..4-6
Control Types...4-7
Input ...4-7
Slide..4-8

Adding a Label and Value to the Slide Control List4-10
Dialog Box Command Buttons ..4-10

Binary...4-11
Ring ..4-12

Adding a Label and Value to the Ring Control List4-14
Dialog Box Command Buttons ..4-14

Numeric..4-15
Output...4-17
Return Value ..4-18
Global Variable ..4-18
Message..4-19

View ...4-19
Instrument...4-19
Window ..4-20
Options ...4-20

Data Types..4-20
Toolbar... ..4-21

Contents

LabWindows/CVI Instrument Driver Guide viii ©National Instruments Corporation

Default Panel Size ..4-21
Panels Movable ..4-21
Toggle Scroll Bars..4-21
Edit Function Tree..4-21
Operate Function Panel ..4-22

Moving Controls ..4-22
Moving Controls between Function Panels ...4-22
Selecting Multiple Controls ...4-22

Function Panel Editor Examples..4-23
Example—Creating a Function Window ...4-23
Example—Changing Control Type..4-27
Example—Cutting and Pasting Controls ...4-29

Chapter 5
Adding Help Information ...5-1

New Style vs. Old Style Help...5-1
Help Options ..5-2
Editing Help Information ...5-2

File..5-3
Edit ...5-4
Window ..5-4

Instrument Help..5-4
Function Class Help ...5-4
Function Help (New Style Help Only)...5-5
Function Panel Window Help (Old Style Help Only)..5-5
Control Help...5-6
Help Information Examples ...5-6

Example—Adding Help Information in the Function Tree Editor5-6
Example—Adding Help Information in the Function Panel Editor.................5-8
Example—Copying and Pasting Help Text ...5-9

Chapter 6
Programming Guidelines for Instrument Drivers..6-1

General Programming Guidelines..6-1
The Core Instrument Driver ...6-2
Modifying the Core Driver...6-3
Adding User Callable Functions ..6-4
Copy and Paste...6-5
Tips for Creating an Instrument Driver..6-6
Developing Portable Instrument Drivers..6-7

Instrument Driver Data Types..6-7
Declaring Instrument Driver Functions and Array and Output Parameters.....6-8
Using Scan and Fmt Functions ..6-9

Error Reporting Guidelines ..6-10
Function Panels ..6-12

Contents

©National Instruments Corporation ix LabWindows/CVI Instrument Driver Guide

Function Tree Hierarchy ..6-12
Documentation Guidelines...6-13

Online Help ..6-13
The .doc File...6-16

Programming Guidelines for RS-232 Instruments...6-17
Initialization Routine..6-17
Close Routine ...6-17
Utility Routines ..6-17

Programming Guidelines for VXI Instruments..6-18
Instrument Driver Checklist ...6-18

Chapter 7
Required Instrument Driver Functions ..7-1

PREFIX_init...7-2
PREFIX_close..7-4
PREFIX_reset...7-5
PREFIX_self_test...7-6
PREFIX_error_query ...7-7
PREFIX_error_message...7-9
PREFIX_revision ...7-10

Chapter 8
Instrument Driver Example ..8-1

Example—Creating a GPIB Instrument Driver ...8-1
Creating the Function Tree...8-2

Creating the Configure Function Panel Window8-4
Creating the Read Waveform Function Panel......................................8-10

Creating the Instrument Program ...8-15
Modifying CORE_GPB.C Source File ..8-15
Modifying the CORE_GPB.H Include File ...8-16
Writing the New Functions ..8-17
Writing the Configure Function ...8-17
Writing the Read Waveform Function ...8-18

Adding New Include Statements and Variable Declarations8-20
Testing the Driver...8-20

Appendix A
Tektronix 2430A Instrument Driver Code Sample

Tektronix 2430A Instrument Driver Header File...A-1
Tektronix 2430A Instrument Driver Source File ...A-2

Appendix B
Customer Communication...B-1

Contents

LabWindows/CVI Instrument Driver Guide x ©National Instruments Corporation

Glossary..G-1

Index ..I-1

Figures

Figure 1-1. Instrument Driver External Interface Model ..1-4
Figure 1-2. Instrument Driver Internal Design Mode ...1-7

Figure 3-1. A Function Tree...3-2
Figure 3-2. The Edit Instrument Dialog Box ...3-8
Figure 3-3. A Sample Function Tree..3-13

Figure 4-1. The Function Panel Editor..4-2
Figure 4-2. Control Types ...4-7
Figure 4-3. The Create Input Control Dialog Box ..4-7
Figure 4-4. The Create Slide Control Dialog Box ..4-8
Figure 4-5. The Edit Label/Value Pairs Dialog Box...4-9
Figure 4-6. The Create Binary Control Dialog Box..4-11
Figure 4-7. The Edit On/Off Settings Dialog Box ..4-12
Figure 4-8. The Create Ring Control Dialog Box...4-12
Figure 4-9. The Ring Control Edit Label/Value Pairs Dialog Box...4-13
Figure 4-10. The Create Numeric Control Dialog Box...4-15
Figure 4-11. The Edit Value Set Dialog Box ..4-16
Figure 4-12. The Create Output Control Dialog Box..4-17
Figure 4-13. The Create Return Value Control Dialog Box ...4-18
Figure 4-14. The Create Global Variable Control Dialog Box ...4-18
Figure 4-15. The Edit Data Type List Dialog Box..4-20
Figure 4-16. The Channel Create Binary Control Dialog Box ...4-24
Figure 4-17. The Channel Edit On/Off Settings Dialog Box..4-24
Figure 4-18. The Volts/Div Create Input Control Dialog Box ...4-25
Figure 4-19. The Coupling Create Slide Control Dialog Box...4-25
Figure 4-20. The Coupling Edit Label/Value Pairs Dialog Box ...4-26
Figure 4-21. The Invert Create Binary Control Dialog Box ...4-26
Figure 4-22. The Invert Edit On/Off Settings Dialog Box..4-27
Figure 4-23. A Function Panel Window ...4-27
Figure 4-24. The Change Input Control Type Dialog Box ...4-28
Figure 4-25. The Volts/Div Edit Label/Value Pairs Dialog Box ..4-28

Figure 5-1. The Help Editor Dialog Box..5-3
Figure 5-2. A Sample Function Tree..5-7

Figure 6-1. The Fluke 45 Digital Multimeter Function Tree ..6-12
Figure 6-2. The Fluke 45 Instrument Help..6-14
Figure 6-3. The Fluke 45 Function Class Help ...6-14

Contents

©National Instruments Corporation xi LabWindows/CVI Instrument Driver Guide

Figure 6-4. The Fluke 45 Function Panel Help...6-15
Figure 6-5. The Fluke 45 Function Panel Control Help..6-15
Figure 6-6. The Fluke 45 Function Panel Error Control Help ..6-16

Figure 8-1. The Function Tree for CORE_GPB.FP..8-2
Figure 8-2. The New Function Tree for the Tektronix 2430A Instrument Driver8-4
Figure 8-3. The Edit Binary Control Dialog Box..8-5
Figure 8-4. The Channel Edit On/Off Settings Dialog Box..8-5
Figure 8-5. The Edit Ring Control Dialog Box for the Volts/Div Ring Control8-6
Figure 8-6. The Volts/Div Ring Control Edit Label/Value Pairs Dialog Box8-7
Figure 8-7. The Edit Ring Control Dialog Box..8-8
Figure 8-8. The Edit Label/Value Pairs Dialog Box...8-8
Figure 8-9. The Complete Configure Function Panel Window ..8-10
Figure 8-10. The Waveform Array Create Output Control Dialog Box8-11
Figure 8-11. The Sample Period Create Output Control Dialog Box8-12
Figure 8-12. The Trigger Offset Create Output Control Dialog Box......................................8-13
Figure 8-13. The Complete Read Waveform Function Panel Window8-14

Tables

Table 2-1. VISA Data Types...2-9

Table 5-1. Types of Help Information..5-2

Table 6-1. Core Instrument Driver Files ...6-4
Table 6-2. VISA Data Types...6-8
Table 6-3. VISA I/O Library Macros..6-8
Table 6-4. Suggested Error Values..6-10
Table 6-5. Instrument Driver Completion and Warning Codes ..6-11
Table 6-6. Instrument Driver Error Codes ..6-11

© National Instruments Corporation xiii LabWindows/CVI Instrument Driver Guide

About This Manual

The LabWindows/CVI Instrument Driver Developer Guide describes developing and adding
instrument drivers to the LabWindows/CVI Instrument Library. This guide is for customers who
develop instrument drivers to control programmable instruments such as GPIB, VXI, and
RS-232 instruments. Follow the procedures in this guide when developing instrument drivers for
personal use or for general distribution to other users. The software tools you use to create
instrument drivers are included in the standard LabWindows/CVI package.

The LabWindows/CVI Instrument Driver Developer Guide is for users familiar with
LabWindows fundamentals. This manual assumes that you are familiar with the material
presented in the Getting Started with LabWindows/CVI guide, the LabWindows/CVI User
Manual, and the LabWindows/CVI Standard Libraries Reference Manual, and that you are
comfortable with the LabWindows/CVI software. Please refer to the LabWindows/CVI User
Manual for specific instructions on operating LabWindows/CVI.

Organization of This Manual

The LabWindows/CVI Instrument Driver Developer Guide is organized as follows:

• Chapter 1, Instrument Driver Overview, introduces the LabWindows/CVI Instrument Library
and instrument drivers, and explains how to use them. This chapter also gives a historical
perspective on the instrument driver library and presents the general models for their
structure.

• Chapter 2, Developing an Instrument Driver, explains the proper procedure for developing an
instrument driver.

• Chapter 3, The Function Tree Editor, explains the function tree and the Function Tree Editor,
and describes the Function Tree Editor menu bar, menus, and commands.

• Chapter 4, The Function Panel Editor, describes how to create and modify instrument driver
function panels using the Function Panel Editor.

• Chapter 5, Adding Help Information, describes the types of help information available from
an instrument driver and how you can create help information.

• Chapter 6, Programming Guidelines for Instrument Drivers, gives you guidelines for creating
instrument drivers and using them with one another. If you write instrument drivers for
general distribution to users, these guidelines ensure portability and proper operation. This
chapter tells you how to create an instrument driver from a LabWindows/CVI core
instrument driver.

About This Manual

LabWindows/CVI Instrument Driver Guide xiv © National Instruments Corporation

• Chapter 7, Required Instrument Driver Functions, describes the implementation of the
required instrument driver functions of a LabWindows/CVI instrument driver. For each
required instrument driver function, the following information is presented; the C function
prototype, a description of the purpose and operation of the function, a table defining each
parameter, all possible completion and error codes, and any special implementation
requirements.

• Chapter 8, Instrument Driver Example, shows you how to create a complete GPIB instrument
driver. The example presented in this chapter can serve as a model for your own instrument
driver development.

• Appendix A, Tektronix 2430A Instrument Driver Code Sample, contains instrument driver
code samples for the Tektronix 2430A.

• Appendix B, Customer Communication, contains forms you can use to request help from
National Instruments or to comment on our products and manuals.

• The Glossary contains an alphabetical list and description of terms used in this manual.

• The Index contains an alphabetical list of key terms and topics in this manual, including the
page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu item, return value, function
panel item, or dialog box button or option.

italic Italic text denotes emphasis, a cross reference, or an introduction to
a key concept.

bold italic Bold italic text denotes a note, caution, or warning.

monospace Text in this font denotes text or characters that you should literally
enter from the keyboard. Sections of code, programming
examples, and syntax examples also appear in this font. This font
also is used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, variables,
filenames, and extensions, and for statements and comments taken
from program code.

italic monospace Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

< > Angle brackets enclose the name of a key. A hyphen between two
or more key names enclosed in angle brackets denotes that you

About This Manual

© National Instruments Corporation xv LabWindows/CVI Instrument Driver Guide

should simultaneously press the named keys–for example,
 <Ctrl-Alt-Delete>.

» The » symbol leads you through nested menu items and dialog
box options to a final action. The sequence
File»Page Setup»Options»Substitute Fonts
directs you to pull down the File menu, select the Page Setup
item, select Options, and finally select the Substitute Fonts
option from the last dialog box.

paths Paths in this manual are denoted using backslashes (\) to
separate drive names, directories, and files, as in
drivename\dir1name\dir2name\myfile

Acronyms, abbreviations, metric prefixes, mnemonics, and symbols, and terms are listed in the
Glossary.

The LabWindows/CVI Documentation Set

For a detailed discussion of the best way to use the LabWindows/CVI documentation set, see the
section Using the LabWindows/CVI Documentation Set in Chapter 1, Introduction to
LabWindows/CVI of Getting Started with LabWindows/CVI.

Customer Communication

National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help you if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in Appendix B, Customer
Communication, at the end of this manual.

© National Instruments Corporation 1-1 LabWindows/CVI Instrument Driver Guide

Chapter 1
Instrument Driver Overview

This chapter introduces the LabWindows/CVI Instrument Library and instrument drivers, and
explains how to use them. This chapter also gives an historical perspective on the instrument
driver library and presents the general models for their structure.

About the Instrument Library and Instrument Drivers

The Instrument Library is a special LabWindows/CVI library that contains a collection of
instrument drivers. Instrument drivers free the user from learning the programming protocol of
an instrument. The software routines of an instrument driver control an instrument, and a set of
data structures represent the instrument driver within LabWindows/CVI. The instrument can be
a single physical instrument such as an oscilloscope or a multimeter, a class of instruments that
share common functions, or a hybrid instrument for which no actual physical instrument exists.

In addition to controlling the instrument, an instrument driver formats the data output from the
instrument so the data can be easily presented to the user. For example, the driver may convert a
binary array of two-byte-wide numbers into an ASCII string, or an ASCII string of X-Y
coordinates into two integer arrays suitable for plotting.

An instrument driver consists of four files.

• The instrument driver program, which can be a .lib , .obj , .dll , or .c file

• The instrument include (.h) file, which contains function declarations, constant definitions,
and external declarations of global variables

• The instrument function panel file (.fp), which contains information that defines the
function tree, the function panels, and the help text

• An ASCII text file (.doc), which contains documentation for the instrument driver

The four filenames consist of the driver name, followed by the appropriate extension. For
example, if the instrument driver name for the Tektronix 2430A digitizing oscilloscope is
tek2430a, its files are named tek2430a.c (.obj , .lib , or .dll), tek2430a.h ,
tek2430a.fp , and tek2430a.doc .

For more information, refer to Using Instrument Drivers, in Chapter 3, Project Window, in the
LabWindows/CVI User Manual.

Instrument Driver Overview Chapter 1

LabWindows/CVI Instrument Driver Guide 1-2 © National Instruments Corporation

How Users Operate the Instrument Driver

To the user, an instrument driver represents one or more functions that perform instrument-
specific actions. The instrument drivers collectively make up the Instrument Library.

Within LabWindows/CVI, the user selects an instrument driver from the Instrument menu.
After selecting an instrument, the user selects a function within the instrument driver. A function
panel appears representing the instrument driver function.

A function panel displays symbolic controls that represent parameters to the function. By
manipulating the controls, the user constructs a specific function call that can then be executed or
saved into a program. Thus, the instrument driver function panel gives users two capabilities.

• Interactive control of the instrument

• The ability to generate function calls that can be included in an application program

In summary, the instrument driver includes one or more functions to perform high-level
instrument-related tasks. By including the function calls in an application program, the user can
control an instrument without knowing the programming protocol of the instrument. Most
developers distribute instrument driver programs in both the .c and .obj formats.

Purpose and Benefits of Instrument Drivers

Instrument drivers have always been an important component of instrumentation system
software. They can dramatically increase productivity by reducing test development time and
making test software modular, so that it is easier to reuse and maintain.

Instrument drivers are conceptually one layer above the traditional instrument command sets.
Rather than requiring a user to include individual I/O statements throughout an application
program, an instrument driver includes all the communication details of a particular instrument
in high-level software functions that are directly usable by end users as part of their application
programs. The instrument driver architecture defined in this manual accommodates traditional
message-based instruments, both SCPI and non-SCPI, as well as direct control of VXIbus
register-based modules.

All LabWindows/CVI instrument drivers are delivered in source code, whenever possible, and
are fully documented. In addition, the drivers are developed using the standard
LabWindows/CVI environment. Therefore, users can understand the operation of the driver and
modify or enhance the operation of a particular instrument driver to achieve the optimum level of
performance and flexibility for their applications.

Chapter 1 Instrument Driver Overview

© National Instruments Corporation 1-3 LabWindows/CVI Instrument Driver Guide

Historical Evolution of Instrument Drivers

Instrument drivers have become increasingly popular over the last several years, and both users
and vendors have taken advantage of the technology. Increased use of instrument drivers has
fueled a continuous improvement process that has resulted in high-quality instrument drivers.

The VXIplug&play systems alliance was founded to address system-level software issues
beyond the scope of the VXIbus consortium and has actively worked to improve existing
instrument driver standards. The VXIplug&play instrument driver architecture leveraged
existing popular technology by building on the successful LabWindows/CVI instrument driver
standards.

This manual documents the latest instrument driver technology and specifies rules, guidelines,
and requirements for the development of standard instrument drivers using LabWindows/CVI.
Differences between the new standard for LabWindows/CVI instrument drivers and the old are
minor. The most notable difference between the old and the new LabWindows/CVI instrument
driver styles are as follows.

• VISA defined data types are used to define parameters of all instrument driver functions. For
example, the return value is of type ViStatus (a 32-bit unsigned integer). These data types
promote the portability of instrument drivers to new operating systems and programming
languages.

• All instrument I/O is performed with the VISA (Virtual Instrumentation Software
Architecture).

• The initialize function has been made generic to the type of interface (GPIB or VXI) that is
used to control the instrument. All instrument addressing information is passed to the
initialize function via a string parameter.

Instrument Driver Architecture

To define a standard for instrument driver software design and development, it is necessary to
use conceptual models around which the design specifications are written. This manual uses two
architectural models for discussion.

The first model, called the instrument driver external interface model, shows how the instrument
driver interfaces to the other software components in the system. This model gives insight into
key architectural decisions with regard to instrument drivers, and adds context as to how
instrument drivers are used. The second model, called the instrument driver internal design
model, defines how an instrument driver software module is organized internally. This model
shows the consistency of approach to instrument driver design regardless of the type of
instrument.

Instrument Driver Overview Chapter 1

LabWindows/CVI Instrument Driver Guide 1-4 © National Instruments Corporation

Instrument Driver External Interface Model

A VXI plug&play instrument driver consists of software modules that control a specific
instrument. The software modules that make up an instrument driver must interact with other
software in the overall system, both to communicate with the instrument and to communicate
with higher-level software and/or end users who use the instrument driver. The first step in
creating a standard for instrument drivers, therefore, is to define a model to explain how the
instrument driver interacts with the rest of the system.

Figure 1-1 shows a general model for how an instrument interfaces with the rest of the system.

Figure 1-1. Instrument Driver External Interface Model

This general model contains the instrument driver functional body, which is the code of the
instrument driver. The programmatic developer interface to the instrument driver is the
mechanism for calling the driver from a higher-level software program. The interactive
developer interface is an interactive graphical interface that assists the software developer in
understanding what each particular instrument driver function does and how to use the
programmatic developer interface to call each function. The VISA I/O interface is the
mechanism through which the driver communicates with the instrument hardware. The
subroutine interface is the mechanism through which the driver may call other software modules
it may need to perform its task. These other software modules may include operating system
calls or calls to other unique libraries such as formatting and analysis functions.

Chapter 1 Instrument Driver Overview

© National Instruments Corporation 1-5 LabWindows/CVI Instrument Driver Guide

Functional Body

The functional body of a LabWindows/CVI is a library of C functions for controlling a specific
instrument. Because the functional body is developed with the standard tools provided in the
LabWindows/CVI environment, users can easily view instrument driver source code and
optimize it for their application. The details of the functional body are explained using the
instrument driver internal design model. Chapter 6, Programming Guidelines for Instrument
Drivers, describes the guidelines for creating the instrument driver functional body.

VISA I/O Interface

An important consideration for instrument drivers is how they perform I/O to and from
instruments. In the LabWindows/CVI instrument driver architecture, the I/O interface is
provided by a separate layer of software that is standard and available on numerous platforms.
The VISA (Virtual Instrument Software Architecture) I/O interface is the National Instruments
next-generation I/O architecture. VISA includes a single interface library for controlling GPIB,
VXI, RS-232, and other types of instruments.

VISA is controller independent and can communicate with instruments via GPIB, MXI,
embedded VXI, and GPIB-VXI controllers.

Subroutine Interface

Because LabWindows/CVI instrument drivers are written in standard ANSI C, the subroutine
interface is simply a function call. Therefore an instrument driver is a software program that can
do anything any other program can do. Some specific instrument drivers may do nothing more
than perform simple message-based and register-based I/O to and from an instrument, but others
may control multiple instruments or use support libraries to integrate data analysis or other
specialized capabilities inside the driver. This type of approach can be used to build virtual
instruments that combine hardware and software capabilities. Complete high-level tests can be
developed and packaged as instrument drivers that can be used by other test developers.

The concept of virtual instrumentation is very important, and instrument driver tools must allow
users to take advantage of it. The LabWindows/CVI instrument driver standard defined in this
document applies both to instrument drivers that only control a single instrument and to
instrument drivers that combine features of multiple instruments and additional software
processing. For this reason, the LabWindows/CVI instrument driver standard has unlimited
potential as a mechanism for delivering baseline instrument drivers. It also has unlimited
potential as a standard vehicle for delivering much more sophisticated application-specific
capability targeted at highly vertical markets or particular application areas.

The subroutine interface is often used to call instrument driver support functions. The instrument
driver support functions are commonly used routines for a particular instrument driver. These
functions can be either declared and defined within the LabWindows instrument driver source
file or supplied in an external module. The instrument driver support functions are not exported
from the instrument driver and are not intended to be accessed by the end user.

Instrument Driver Overview Chapter 1

LabWindows/CVI Instrument Driver Guide 1-6 © National Instruments Corporation

Programmatic Developer Interface

The programmatic developer interface is the mechanism for using the instrument driver as part of
a test program application. LabWindows/CVI instrument drivers consist of component functions
and one or more application functions to control the instrument. The programmatic developer
interface to these modular software functions is a standard software function call, and the user's
program has a single multi-parameter call for each instrument driver function.

In the LabWindows/CVI instrument driver architecture, the software interface to an instrument
driver is the same as for any other software library module that a user may want to develop or
use. This interface is accomplished through standard software function calls, with no special
instrument-driver-specific requirements.

With a high-level function call interface to instrument drivers, the end user resultant test program
code consists of a few calls to the instrument driver, each call using multiple parameters. A key
benefit of this approach is that the interface to the instrument driver in the user program is
modular and easy to identify, and any interactive developer interface tools (discussed in the next
section) that were used during development of the user code can be recalled during debugging to
understand how the program uses the instrument driver.

Interactive Developer Interface

When a LabWindows/CVI instrument driver is used as an integral part of a higher-level
application software development environment, the programmatic developer interface to the
instrument driver can be enhanced with graphical function panels. Function panels, referred to as
the interactive developer interface, are designed to assist the programmer by making it easier to
understand how to use the instrument driver. The function panel interface allows the
programmer to operate the particular instrument driver function interactively to understand the
function and automatically generate the instrument control statements that are used in an
application program.

Chapter 1 Instrument Driver Overview

© National Instruments Corporation 1-7 LabWindows/CVI Instrument Driver Guide

Instrument Driver Internal Design Model

The instrument driver internal design model, shown in Figure 1-2, defines the internal
organization of the functional body of the driver.

Figure 1-2. Instrument Driver Internal Design Mode

The functional body of a LabWindows/CVI instrument driver consists of two main categories.
The first category is a collection of component functions, which are software modules that each
control a specific area of the instrument's functionality. The second category is a collection of
application functions, that show how to use the component functions together to perform
complete test and measurement operations.

The modularity of LabWindows/CVI instrument drivers builds on proven technology. With a
modular approach, a user has the granularity needed to control instruments properly in their
software application. The user can, for example, initialize all instruments once at the start,
configure multiple instruments, and then trigger several instruments simultaneously. As another
example, a user can initialize and configure an instrument once, and then trigger and read from
the instrument several times.

Component Functions

LabWindows/CVI instrument drivers have component functions, which are divided into six
categories: initialize, configuration, action/status, data, utility, and close. Each of these
categories, with the exception of the initialize and close functions, will consist of several modular
software routines. Much of the critical work in developing an instrument driver lies in the
up-front design and organization of the instrument driver component functions. The specific
routines in each category are further categorized as either required functions or
developer-specified functions.

Instrument Driver Overview Chapter 1

LabWindows/CVI Instrument Driver Guide 1-8 © National Instruments Corporation

The required functions are instrument driver functions that are common to the majority of
instruments. These functions perform the following instrument operations.

• Initialize

• Close

• Reset

• Self-Test

• Error Query

• Error Message

• Revision Query

The remainder of instrument driver functions are known as developer-specified functions, and
the actual operations performed by those routines are left up to the instrument driver developer.
All instruments will have configuration functions, for example, but different instruments may
have different numbers of configuration functions depending on the differences in how the
instruments can be configured. General guidelines in Section 6, Programming Guidelines for
Instrument Drivers, define, organize, and structure the functions within each category. By
following these guidelines, similar instruments will have similar sets of functions.

The LabWindows/CVI instrument driver specifications recommend that an instrument driver
provide full function control of the instrument. However, it does not attempt to mandate the
required functionality of all instrument types such as DMMs, counter/timers, and so on. Rather,
the focus is on the architectural guidelines of all drivers. In this way, all driver developers have
the flexibility to implement functionality unique to a particular instrument, yet all drivers are
organized, packaged, and used in the same way.

Initialize Function

The initialize function initializes the software connection to the instrument. The initialize
function can optionally perform an instrument identification query and reset operations. In
addition, it may perform any necessary actions to place the instrument in its default power-on
state or other specific state.

Configuration Functions

The configuration functions are a collection of software routines that configure the instrument to
perform the desired operation. There may be numerous configuration functions, depending on
the particular instrument.

Chapter 1 Instrument Driver Overview

© National Instruments Corporation 1-9 LabWindows/CVI Instrument Driver Guide

Action/Status Functions

The action/status category contains two types of functions. Action functions cause the
instrument to initiate or terminate test and measurement operations. Status functions obtain the
current status of the instrument or the status of pending operations. The specific routines in this
category and the actual operations performed by those routines are left up to the instrument
driver developer.

Data Functions

The data functions include functions to transfer data to or from the instrument. Examples include
functions for reading a measured value or waveform from a measurement instrument, functions
for downloading waveforms or digital patterns to a source instrument, and so on. The specific
routines in this category and the actual operations performed by those routines are left up to the
instrument driver developer.

Utility Functions

The utility functions can perform a variety of operations. Some utility functions are required,
such as reset, self-test, error query, error message, and revision query, and some are defined by
the developer.

Reset The reset function places the instrument in a default state.

Error Query The error query function queries the instrument and returns the instrument-
specific error information.

Error Message The error message function translates the error return value from a
LabWindows/CVI instrument driver function to a user readable string.

Revision Query The revision query function returns the revision of the instrument driver
and the firmware revision of the instrument being used.

Close Function

All LabWindows/CVI instrument drivers have a Close function that terminates the software
connection to the instrument and deallocates system resources

Application Functions

The application functions are high-level test and measurement oriented routines that are also
provided in source code. These examples are instrument driver functions that can be called via
their own program interface when a user wants a single, test and measurement oriented, and

Instrument Driver Overview Chapter 1

LabWindows/CVI Instrument Driver Guide 1-10 © National Instruments Corporation

high-level function interface to the driver. In most cases, these examples are single functions
that configure, start, and read the instrument, all in a single operation.

The application functions are required not only because they provide a valuable example of how
to use the component functions, but also because they are useful when users want a
single-function, test and measurement oriented interface to the driver rather than using the
individual component functions.

Note: LabWindows/CVI instrument driver application functions do not call the
PREFIX_init or PREFIX_close functions.

© National Instruments Corporation 2-1 LabWindows/CVI Instrument Driver Guide

Chapter 2
Developing an Instrument Driver

This chapter explains the proper procedure for developing an instrument driver.

General Guidelines

The following general guidelines help you develop an instrument driver. Follow these guidelines
whether you are developing instrument drivers for personal use or for general distribution to
other users:

• Before creating your instrument driver, define the structure of the driver. A useful instrument
driver is more than a group of functions; it is a tool to help users develop application
programs. Therefore, design an instrument driver with the user in mind.

• Always base your instrument on one of the core instrument drivers or an existing instrument
driver developed from one of the core instrument drivers.

• Follow the specific steps in this chapter to write your instrument driver. Each step directs you
to subsequent chapters for more detailed information and further guidelines. Read all
chapters referenced within each step before you perform the tasks outlined in the step.

Writing an Instrument Driver

You can develop the pieces of an instrument driver in several different sequences. More detailed
information about how to perform the individual steps in the procedure appears in this chapter
and subsequent chapters. To write the driver for your specific instrument, we recommend the
following procedure.

1. Name the instrument driver.

2. Define the instrument functions and function classes.

3. Create a function tree for the instrument driver, adding help information to the top level of
the tree.

4. For each function in the driver:

a. Define the parameters to the function, including variable types and limits, and error
codes.

Developing an Instrument Driver Chapter 2

LabWindows/CVI Instrument Driver Guide 2-2 © National Instruments Corporation

b. Create the function panel for the function, including help information for the panel and
for each control.

c. Write the code to perform the function.

d. Test the source code.

5. Create the include file for the final instrument source code, including function declarations
and constant definitions.

6. Operate the completed driver using function panels without loading the source code.

7. Document the driver.

Naming the Driver

When you create instrument drivers, you add routines to the LabWindows/CVI Instrument
Library. Give unique and meaningful names to the driver and its routines to avoid conflicts with
the other instrument drivers and routines. You accomplish this with an instrument prefix that you
assign when you create the instrument driver. Insert this prefix before each function name in the
driver and use the prefix to name the component files (.c , .h , .fp , and so on) of the driver.

For example, suppose you write an instrument driver for the Fluke 8840A digital multimeter. If
you choose the instrument prefix fl8840a , the files that comprise the instrument driver would
be fl8840a.c , fl8840a.h , fl8840a.fp . and fl8840a.doc . Furthermore, the driver
function names each have the prefix fl8840a added to them, for example,
fl8840a_trigger .

Note: The instrument prefix must have eight characters or less. LabWindows/CVI adds an
underscore (_) separator to the eight-character prefix before appending the function
name to it.

Defining the Instrument Functions

An instrument driver can feature one or more functions you can use to program the instrument.
For a simple instrument, you can use two or three functions through which you can program the
instrument. For a more complex instrument, you can use function classes, each of which contains
functions specific to that class. In addition, you can break down complex instruments
conceptually into independent instrument drivers, where each driver represents one major
application of the complex instrument.

Chapter 2 Developing an Instrument Driver

© National Instruments Corporation 2-3 LabWindows/CVI Instrument Driver Guide

Structuring Functions In An Instrument Driver

The three implementations of a single instrument driver in this section show you some options
for structuring functions. In this example, the designer includes seven functions with which to
program the instrument.

The first implementation gives the user a simple linear list of all available functions.

instrumentA(1)
function1
function2
function3
function4
function5
function6
function7

The second implementation breaks the functions into two function classes.

instrumentA(2)
function_class1

 function1.1
 function1.2
 function1.3
 function1.4

function_class2
 function2.5
 function2.6
 function2.7

The third implementation treats the two function classes as two distinct instruments.

instrumentA(3.1)
function1
function2
function3
function4

instrumentA(3.2)
function5
function6
function7

To successfully structure the functions for your instrument, you must determine who will use the
instrument driver and how they will use the instrument. Define functions that stand alone to
perform a useful action. For example, it may at first seem logical to use the functions
SET_DMM_RANGE and SET_DMM_FUNCTION for setting the range and function of a
multimeter. However, a more useful function may be DMM_CONFIG, for setting up multiple
parameters.

Developing an Instrument Driver Chapter 2

LabWindows/CVI Instrument Driver Guide 2-4 © National Instruments Corporation

Defining the Hierarchy of Functions

If the instrument has numerous functions that logically fall into classes, you can group them into
function classes or treat the groups of functions as independent instruments. The user can
identify the functions required by the desired action without the burden of choosing from a long
list of unrelated functions.

The concept of function classes is only apparent to the user from within LabWindows/CVI. From
the application program, functions within an instrument driver are all called the same way,
regardless of which function class they are in. Functions that are divided between separate
instrument drivers, however, are treated as functions of two distinct instruments.

Defining the Function Parameters

To design the code for an instrument driver function, you must first establish its parameters.

Function parameters give input information to the function and variables where the function can
store its results, or output. Output parameters can contain values that were read from the
instrument and formatted for the user.

Data Types

You must define a data type for each parameter in an instrument driver. All data types used by
the instrument driver must be defined for the .fp file. You specify the data type of a parameter
when you create its corresponding control on a function panel. This data type must also be
consistent with the prototypes in the instrument driver header file.

With this information, LabWindows/CVI gives appropriate variable declaration and run-time
checking capabilities when users operate a function panel. When you declare a variable from a
function panel, LabWindows/CVI presents options based on the data type defined in the .fp
file. When you run a function from a function panel, LabWindows/CVI verifies that the data type
of the control matches the prototype of the function.

Data types are broken into three classes: predefined data types, user-defined data types and VISA
data types.

Predefined Data Types

Predefined data types are available by default in the LabWindows/CVI environment. The
predefined data types consist of intrinsic C data types and meta data types defined by
LabWindows/CVI.

Chapter 2 Developing an Instrument Driver

© National Instruments Corporation 2-5 LabWindows/CVI Instrument Driver Guide

Intrinsic C Data Types

The intrinsic C data types predefined by LabWindows/CVI are listed below.

int
long
short
char
unsigned int
unsigned long
unsigned short
unsigned char
int []
long []
short []
char []
unsigned int []
unsigned long []
unsigned short []
unsigned char []
double
float
double []
float []
char *
char *[]
void *

When you create a control to represent an array of data, make the data type an intrinsic C data
type that ends with the open and close brackets, [] . Do not select a data type that ends with an
asterisk, "* ". The brackets tell LabWindows/CVI that the control represents an array of data, not
a pointer. LabWindows/CVI will then perform the appropriate variable declaration and runtime
checking capabilities when the user operates the function panel.

When you define a .fp control with an intrinsic C data type, variables you declare in that .fp
control using the Declare Variable command appear with that data type in the dialog box. You
must define the parameter as that data type in the instrument driver function prototype.

Meta Data Types

The meta data types combine intrinsic C data types and user-defined data types. The meta data
types are Numeric Array , Any Array , Any Type , and Var Args . These data types
define sets of allowable data types for a parameter. When the user executes the Declare Variable
command on a control defined with a meta data type, the user can select from a list of allowable
data types.

Developing an Instrument Driver Chapter 2

LabWindows/CVI Instrument Driver Guide 2-6 © National Instruments Corporation

Numeric Array

Numeric Array specifies a parameter that may be any of the intrinsic C numeric array data types.
You must define the parameter as void * in the function prototype. An example of a Numeric
Array data type is in the PlotX function of the User Interface library. The PlotX function plots
the values of any intrinsic C numeric array data type to a graph control on a user interface panel.
On the function panel, the X Array control is of type Numeric Array and is defined as
void * in the function prototype shown below.

int PlotX(int panel, int control, void *xArray, int numPoints,
int xDType, int plotStyle, int pointStyle, int lineStyle,
int pointFreq, int color);

Any Array

Any Array specifies a parameter that may be any of the intrinsic C or user-defined array data
types. You must define the parameter as void * in the function prototype. An example of an
Any Array data type is in the memcpy function of the ANSI C library. This function copies a
specified number of bytes from a target buffer of any type to a source buffer. In the function
panel the first parameter is the Target Buffer which is of type Any Type and is defined as a
void * in the function prototype shown below.

void *memcpy(void *, const void *, size_t);

Any Type

Any Type specifies a parameter that may be any of the intrinsic C or user-defined data types. If
the parameter is an output parameter, you must define it as void * in the function prototype. If
the parameter is an input parameter, you must define it as “... ” in the function prototype, and it
must be the last parameter in the function. The Value output parameter of the
GetCtrlAttribute function in the User Interface Library is an example of the Any Type
data type. The function obtains the value of a control attribute from the selected panel and
control. Although attribute values may be of different data types, the parameter is passed by
reference and is therefore a pointer. Consequently, the attribute value parameter is of type
Any Type and is defined as void * in the function prototype shown below.

int GetCtrlAttribute(int panel,int control, int attribute, void *value);

The Value parameter of the SetCtrlAttribute function also applies to attributes of
different data types, but it is an input rather than an output parameter. It is passed by value rather
than by reference and thus can have different sizes. For example, it might be an int or a
double . Consequently, the attribute value parameter is of type Any Type and is defined as
“ ... ” in the function prototype shown below.

int SetCtrlAttribute (int panel, int control, int attribute, ...);

Chapter 2 Developing an Instrument Driver

© National Instruments Corporation 2-7 LabWindows/CVI Instrument Driver Guide

Var Args

Var Args specifies a variable number of parameters that may be any of the intrinsic C or user-
defined data types. You must define the parameters as “... ” in the function prototype. The
printf and scanf functions in the ANSI C library is an example of the Var Args data type.
Following the format string parameter in each function, you can specify one or more parameters
of different data types to match the type specifiers in the format string. In printf , the
parameters are passed by value. In scanf , they are passed by reference and thus are really
pointers. For both functions, one Var Arg function panel control is used, and “... ” appears in
the function prototypes shown below.

int printf (const char *, ...);
int scanf (const char *, ...);

User-Defined Data Types

LabWindows/CVI also lets you define data types and use them in function panels. You must
declare user-defined data types in the function panel file of an instrument driver and you must
define the data type in the header file of the driver. Declare user-defined data types with the Data
Types command box in the Function Panel Editor.

For example, you can define a data type waveform_var for an instrument driver to represent
waveform data. This waveform_var data type could be a structure that contains an array of
doubles to represent the individual points in the waveform, a float for the time of the first
point, and a float for the time between points.

Creating a User-Defined Data Type

Create a user-defined data type for use in a function panel as follows:

1. Define the data type with a typedef statement in the instrument driver header file.

2. Add the data type to the instrument driver function panel file using the Data Types command
in the Options menu in the Function Panel Editor.

Step one for the waveform_var data type presented previously is to include the following
code in the header file of the instrument driver.

typedef struct {
double waveform_arr [500];
float t_zero;
float t_delta;

} waveform_var;

Developing an Instrument Driver Chapter 2

LabWindows/CVI Instrument Driver Guide 2-8 © National Instruments Corporation

Step two is to make the waveform_var data type available in the function panel file. Select
Data Types from the Options menu of the Function Panel Editor and enter

waveform_var

in the Type box of the Edit Data Type List dialog box. Then select Add.

Now you can select the waveform_var data type when you create function panel controls for
this instrument driver. Also, users can interactively declare a variable of waveform_var data
type from any function panel control that was defined as waveform_var .

See Chapter 4, The Function Panel Editor, for a discussion of the Edit Data Type List dialog
box.

User-Defined Array Data Types

Use care when you declare user-defined data types that will be used as arrays. If you want to
define a user-defined array data type, brackets [] must appear at the end of the type in the Edit
Data Type List dialog box. The brackets enable the interactive variable declaration and other
capabilities of LabWindows/CVI function panels. For example, to declare an array of
waveform_var type from the example presented above, add

waveform_var [] (This example is correct because it includes brackets.)

to the Type box of the Edit Data Type List dialog box, and include in the instrument driver
header file the typedef declaration for waveform.var that was presented in the previous
example.

Examples of incorrect ways to define array user-defined data types are shown below.

Assume the following data type definitions are in an instrument driver header file.

typedef waveform_var * waveform_arr1;
typedef waveform_var waveform_arr2[100];

Then the following data type declarations in the Edit Data Type List dialog box are incorrect:

waveform_var * (This example is incorrect because it lacks brackets.)
waveform_arr1 (This example is incorrect because it lacks brackets.)
waveform_arr2 (This example is incorrect because it lacks brackets.)

VISA Data Types

A special set of data types are defined by the VISA I/O library. The data types strictly define the
type and size of the parameters and therefore promote the portability of the functions to new
operating systems and programming languages.

Chapter 2 Developing an Instrument Driver

© National Instruments Corporation 2-9 LabWindows/CVI Instrument Driver Guide

A subset of the VISA data types has been defined for use in the development of
LabWindows/CVI instrument drivers and are accessible as user-defined data types. These special
data types used for instrument drivers are as follows.

Table 2-1. VISA Data Types.

VISA Type Name Definition

ViInt16 Signed 16-bit integer

ViInt32 Signed 32-bit integer

ViReal64 64-bit floating point number

ViInt16[] An array of ViInt16 values

ViInt32[] An array of ViInt32 values

ViReal64[] An array of ViReal64 values

ViChar[] A string

ViRsrc An Instrument Driver resource descriptor (string)

ViSession An Instrument Driver session handle

ViStatus An Instrument Driver return status type

ViBoolean Boolean value

ViBoolean[] An array of ViBoolean values

To use these special user-defined data types in an instrument driver, do the following:

1. Add the VISA data types to the function panel file by using the Data Type command in the
function panel editor. Then select Add VISA Types from the Edit Data Type List dialog.

2. Include the file vpptype.h in the instrument driver header file.

See Chapter 4, The Function Panel Editor, for a discussion of the Edit Data Type List dialog
box.

Input and Output Parameters

Because instrument drivers generally reflect a physical instrument, the input and output function
parameters correspond to one or more of the controls on the face of the instrument.

Define output parameters as follows.

1. Review the purpose of the function to determine the inputs and outputs.

Developing an Instrument Driver Chapter 2

LabWindows/CVI Instrument Driver Guide 2-10 © National Instruments Corporation

2. Choose the data type of each parameter. The data type should be one that the application
program can easily use.

a. If a parameter is an array data type, select a data type with brackets [] at the end of the
data type name.

b. For output parameters, select the data type of the value that will be passed, not a pointer
to that type. When users operate function panels interactively, LabWindows/CVI knows
to pass a variable by reference because the control is defined as an output.

For example, in a function examp_func that had an output examp_out as an integer
parameter, you prototype the function in the instrument driver header file as

examp_func (int *examp_out);

When you create a function panel for this function, you need to create an output control for
examp_out and specify its data type as int , not as int * . When a user declares variables
interactively from the function panel, LabWindows/CVI will create a variable of the type
specified and automatically put an "&" in front of the variable name to pass it by reference.

3. Assign a meaningful name to each parameter.

Return Values

Instrument driver functions may also have a return value. Instrument drivers supplied by
National Instruments use function return values to implement an error-handling mechanism. All
instrument driver functions have a return value of type ViStatus (32-bit unsigned integer) that
returns error and status information about the function call.

Required Instrument Driver Functions

If your instrument driver is for a GPIB, VXI, or RS-232 instrument, you are required to define
several functions. These functions are as follows.

• Initialize

• Close

• Reset

• Self-Test

• Error Query

• Error Message

• Revision Query

Chapter 2 Developing an Instrument Driver

© National Instruments Corporation 2-11 LabWindows/CVI Instrument Driver Guide

Chapter 7, Required Instrument Driver Functions, describes the implementation guidelines for
the required instrument driver operations.

Building the Function Tree

When users access an instrument driver from the Instrument menu, they can select instrument
functions from one or more dialog boxes. The function tree shows the organization of the
functions in dialog boxes. You use the Function Tree Editor to create the function tree.
Chapter 3, The Function Tree Editor, describes the use of the Function Tree Editor.

In addition to specifying the appearance, the function tree also contains help information that the
user can access from the dialog boxes. Add this help information as you create the tree.
Chapter 5, Adding Help Information, explains how to add help information to the function tree.

Building the Function Panels

Users operate the function panels to execute instrument driver functions and to generate code for
an application program. Each primary function requires a function panel. A secondary function
can appear on one or more function panels. A function panel can also consist entirely of
secondary functions. The Function Panel Editor lets you build function panels by placing
controls on a blank panel in the position and order that you want them to appear.
Chapter 3, The Function Panel Editor, describes the use of the Function Panel Editor.

The Function Panel Editor also lets you add online help information for each control on a panel.
Add this help information as you create each panel. Chapter 5, Adding Help Information,
explains how to add help information to a function panel.

Writing the Function Code

After you name the function and define its parameter list, you write the code to implement the
function. The LabWindows/CVI User Manual describes the development tools available in
LabWindows/CVI for testing and debugging your code. The instrument driver you create uses
full C language source code.

To develop the instrument driver source code, follow the guidelines in Chapter 6, Programming
Guidelines for Instrument Drivers.

Operating the Driver

After you have created the .c (.obj , .lib , or .dll), .h , and .fp files, you can operate the
instrument driver. Load the driver using the Load command in the Instrument menu and
operate every function panel that you have created. Then, use the panels to generate a sample

Developing an Instrument Driver Chapter 2

LabWindows/CVI Instrument Driver Guide 2-12 © National Instruments Corporation

program to verify operation of the driver. Chapter 3, The Project Window, of the
LabWindows/CVI User Manual, tells more about operating instrument drivers.

Testing the Instrument Driver

Before you distribute an instrument driver, you should fully test it. Test it from within the
LabWindows/CVI interactive program and as a standalone application. A suggested testing
sequence for instrument drivers is outlined here.

Caution: Be sure to save copies of the original instrument source files in a separate
directory.

1. Load the instrument driver and execute all functions from the function panels.

2. Verify correct operation of all functions.

3. Create and run a sample application program that exercises all of the functions in the driver
within LabWindows/CVI.

4. Verify correct operation of the application program.

5. Create and run a sample application that exercises all of the functions in the driver within a
standalone application.

6. Verify correct operation of the application program.

Documenting the Driver

The final step in creating an instrument driver is to document the driver. The .doc file describes
the purpose of the driver, the function tree, and function panels, and contains a function reference
list explaining the syntax of each function in the driver. Chapter 6, Programming Guidelines for
Instrument Drivers, contains guidelines and suggestions for documenting your instrument driver.

© National Instruments Corporation 3-1 LabWindows/CVI Instrument Driver Guide

Chapter 3
Function Tree Editor

This chapter explains the function tree and the Function Tree Editor, and describes the Function
Tree Editor menu bar, menus, and commands.

About the Function Tree and Function Tree Editor

The function tree defines the way functions are grouped in the dialog boxes. Users access the
function panels of an instrument driver through the Select Function Panel dialog box which they
select from the Instrument menu. You use the Function Tree Editor to create and modify the
function tree for an instrument driver.

To invoke the Function Tree Editor, select the Function Tree (*.fp) option from either the New
or Open commands in the File menu.

When you invoke the Function Tree Editor, a new Function Tree Editor window appears. If you
selected Open to edit an existing function tree, the function tree for the file you selected appears
in the window. To edit the function panel of an instrument driver that is loaded in the
Instrument menu, select Edit from the Instrument menu. Then highlight the name of the
instrument in the selection list of the Edit Instrument dialog box and press the Edit Function
Tree button. A function tree appears in Figure 3-1.

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-2 © National Instruments Corporation

Figure 3-1. A Function Tree

If you selected New to create a new function tree, you see a blank Function Tree Editor window.

Function Tree Editor Menu Bar

You can edit an existing tree or create a new tree with the Function Tree Editor. You have the
following options on the Function Tree Editor menu bar:

• File lets you create a new function tree, edit an existing function tree, save function panel
information into a .fp file on disk, or add function panels to a project.

• Edit lets you modify the entries on the function tree or add help information.

• Create lets you create a new function tree, or add new functions and classes to an existing
function tree.

• Instrument lets you load instrument drivers, unload them, or select which function panel to
edit.

• Window lets you select which window to make active.

• Options lets you select the help style, generate function prototypes, generate a .doc file,
create a DLL project, and select whether to enable VXIplug&play style.

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-3 LabWindows/CVI Instrument Driver Guide

File

The File menu lets you create a new function tree, edit an existing function tree, save function
panel information into a .fp file on disk, or add function panels to a project. The File menu
operates like the File menu of the Project window. The LabWindows/CVI User Manual,
Chapter 4, The Project Window, tells more about the File menu.

Edit

The Edit menu lets you edit the entries in the function tree. You have the following options in
the Edit menu.

• Cut deletes the highlighted function or class from the tree and copies it to the Clipboard.

• Copy copies the highlighted function or class from the tree to the Clipboard.

• Paste Above inserts the contents of the Clipboard into the tree above the highlighted line.

• Paste Below inserts the contents of the Clipboard into the tree below the highlighted line.

• When you cut or copy a class to the Function Tree Editor Clipboard, all of its subclasses and
functions are cut or copied as well. Similarly, when you paste the class, all of its subclasses
and functions are also pasted.

• Edit Node... lets you edit the instrument, function, or class name on the highlighted line.

• Edit Help lets you add context-sensitive help information to the function tree. See Chapter 5,
Adding Help Information, to learn how to add help information.

• Edit Function Panel Window lets you edit the highlighted function in the function tree
editor and display it in the Function Tree Editor. Chapter 4, Function Panel Editor, gives you
information on using the Function Panel Editor.

• FP Auto-Load List allows you to specify other instrument drivers on which the instrument
driver you are currently developing is dependent. These instrument drivers are loaded when
the current instrument driver is loaded

– via the Load command in the Instrument menu

– in the process of loading a project file in which the current .fp file is listed.

The .FP Auto-Load List command brings up a dialog in which you can list simple .fp file
names. Do not include drive or directory names. When you load the current instrument
driver, LabWindows/CVI tries also to load the instrument drivers identified by these .fp file
names.

CVI looks for these .fp files in the following sequence.

1. It first looks in the directory of the referencing .fp file.

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-4 © National Instruments Corporation

2. It then looks for them in the “instrument directories list” which is edited using the
Instrument Directories command in the Options menu of the Project window.

3. Finally, it looks for them in the “instr ” directory under the directory where
LabWindows/CVI is installed.

If a .fp file cannot be found, the user is given a chance to look for it using a file dialog. If
the user finds the .fp file, the user is prompted to add the directory to the instrument
directories list. The user is also given the option to add the file to the project.

If an auto-loaded .fp file has no classes or function panels, then it is not listed in the
Instrument menu. This is useful for support modules that contain no user-callable functions.

When the user selects the Unload command from the Instrument menu, all auto-loaded .fp
files are listed in the dialog. Auto-loaded instruments are not unloaded automatically when
the dependent instrument is unloaded.

Create

The Create menu lets you create a new instrument tree or add functions and classes to an
existing tree.

You have the following options in the Create menu.

• Instrument... lets you create a new function tree.

• Class... lets you add a new class to the function tree.

• Function Panel Window... lets you add a new function to the function tree.

Instrument...

The Instrument command lets you create a new function tree. When you select Instrument , a
dialog box appears. Enter the following information in the Create Instrument Node dialog box:

• The name of the instrument (up to 40 characters)

• The prefix that you want LabWindows/CVI to add to the beginning of each function name
within the instrument driver code. The prefix cannot exceed eight characters. Do not include
the underscore (_) separator in your prefix. LabWindows/CVI adds an underscore (_)
separator to the prefix before appending the function name to it.

The instrument name you enter in the Create Instrument Node dialog box appears at the bottom
of the Function Tree Editor window. The line Create Class or Function Panel
Window appears beneath the instrument name. Add functions and classes to the function tree
using the Function and Class commands.

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-5 LabWindows/CVI Instrument Driver Guide

Class

Use the Class command to add a new class to a function tree.

When you select the Class command, a dialog box appears. Enter the name that you want to
appear in the Select Function Panel dialog box which users choose from the Instrument menu.

Adding a Class to an Empty Tree or Class

Add a class to an empty tree as follows.

1. Highlight the line containing Create Class or Function Panel Window .

2. Select Class from the Create menu. The Create Class Node dialog box appears.

3. Complete the Create Class Node dialog box. The class appears in the function tree window.

The new class name takes the place of the Create Class or Function Panel
Window message on the highlighted line.

Inserting a Class into an Existing Tree

In the function panel hierarchy, you can insert up to eight levels of classes. To insert a class into
a function tree, follow these steps.

1. Highlight an existing function or class at the level you want to place the new class.

2. Select Class from the Create menu. The Create Class Node dialog box appears.

3. Complete the Create Class Node dialog box. The new class is inserted on the line below the
existing function or class. The class exists at the same level in the tree as the function or class
that originally occupied the line.

Note: A function tree can contain a combination of up to 32000 functions and classes.

Function Panel Window...

The Function Panel Window command of the Create menu lets you add a new function to a
function tree.

When you select the Function Panel Window command, a dialog box appears. Enter the
following information in the Create Function Panel Window Node dialog box.

1. Enter in the Name text box the name that you want to appear in the Function Panel Selection
dialog box when the instrument is chosen from the Instrument menu.

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-6 © National Instruments Corporation

2. Enter in the Function Name text box the actual code name used in the instrument driver for
the function being added. This function name must be valid for the current language.

Note: The name of every function in an instrument driver begins with a common prefix. Do
not enter the prefix of the function name. LabWindows/CVI automatically adds the
prefix to each function name. The prefix was specified when the function tree was
created from the Instrument command in the Create menu.

Adding a Function to an Empty Tree or Class

Add a function to an empty tree or class as follows:

1. Highlight the line containing Create Class or Function Panel Window.

2. Select Function Panel Window from the Create menu. The Create Function Panel Window
Node dialog box appears.

3. Complete the Create Function Panel Window Node dialog box. The new function name
appears in place of the Create Class or Function Panel Window message on the highlighted
line.

Inserting a Function into an Existing Tree

Insert a function at any level in an existing function tree as follows:

1. Highlight an existing function or class at the level you want to place the new function.

2. Select Function Panel Window from the Create menu. The Create Function Panel Window
Node dialog box appears.

3. Complete the Create Function Panel Window Node dialog box.

The new function is inserted on the line below the existing function or class. The function exists
at the same level in the tree as the function or class that originally occupied the line.

Instrument

Use the Instrument menu to load and edit an instrument driver, and to edit a function in the
loaded instrument driver. The Instrument menu operates like the Instrument menu on the main
LabWindows/CVI menu bar, except that the instrument function tree you select appears in a
Function Tree Editor window.

The Instrument menu lists the loaded instrument drivers. The Instrument menu presents the
following standard options.

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-7 LabWindows/CVI Instrument Driver Guide

• Load... lets you add an instrument driver to the Instrument menu.

• Unload... lets you remove one or all instrument drivers from the Instrument menu.

• Edit... lets you invoke the Function Panel Editor or modify the relationship between the
function panel file and its associated program file.

Load...

The Load command of the Instrument menu lets you add a new instrument driver to the
Instrument menu. The Load command operates like the Open command in the File menu.
When you select the Load command, the Load Instrument dialog box appears. Enter the
appropriate information to select an existing function panel file.

Unload...

• The Unload command removes one or all instrument drivers from the Instrument menu.
When you select the Unload command, the Unload Instrument dialog box appears. In this
dialog box, you have the following options.

• Use the mouse or the cursor keys and space bar to individually select which instrument
drivers to unload.

• Select all instrument drivers by pressing the Check All button.

• Deselect all instrument drivers by pressing the Check None button.

• Press the OK button to unload the selected instrument drivers.

• Press the Cancel button to return without unloading any instrument drivers.

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-8 © National Instruments Corporation

Edit...

The Edit command lets you invoke the Function Panel Editor or modify the relationship between
the function panel file and its associated program file. When you select Edit from the
Instrument menu, the dialog box shown in Figure 3-2 appears.

Figure 3-2. The Edit Instrument Dialog Box

The Edit Instrument dialog box presents the following options.

• Show Info... lets you display the names of the current function panel file and the attached
program file. It also shows whether these files are in the current project and if the program
file is compiled. The attached program file contains the functions that are called when users
operate the function panel.

• Attach and Edit Source searches the directory that contains the function panel file for a
filename that has the same prefix as the function panel file and a .c extension. If the file is
found, a new source window opens with the file displayed in it and the source file is attached
to the function panel. If the file is not found, you are prompted to create a new source file and
a blank source window appears.

• Detach Program detaches the program file from the function panel.

• Reattach Program attaches a program file to a function panel. It searches the directory that
contains the function panel file for a filename that has the same prefix as the function panel
file and a .lib , .obj , .dll , or .c extension. If a file is found, the program attaches it to
the function panel.

• Edit Function Tree invokes the Function Tree Editor.

• Done exits the Edit Instrument dialog box without modifying the function panel.

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-9 LabWindows/CVI Instrument Driver Guide

Window

The Window menu lets you select which window to make active. The Window menu operates
like the Window menu of the Project window. Chapter 3, The Project Window, in the
LabWindows/CVI User Manual, tells more about the Window menu.

Options

The Options menu lets you operate the function tree or select the help style. The Options menu
presents the following options.

• Help Style lets you choose the help style New (Recommended) or Old (LabWindows
DOS) when you are editing context-sensitive help information of the function tree.

The new and old help styles differ significantly. The Old help style maintains compatibility
with function panels created in LabWindows version 2.3 or less. This help style uses the
DOS/IBM character set so that it can display special extended ASCII characters that many
older instrument drivers use. Also, the old style gives help information for the entire function
panel window, not the individual function panels within a function panel window.

The New help style uses the standard Windows character set and gives help information for
each individual function panel. In addition, the new help style automatically generates control
name and data type information when displaying control help, and automatically generates a
function prototype when displaying function help. Also, the help text editor for the new style
help uses word-wrap mode.

Changing the help style only changes how the program interprets help information. If you use
special extended ASCII characters in your help information, and then change to the New
style, you will have to change the help text to a Windows-compatible character set.

• Transfer Window Help to Function Help helps you convert your function panel from old
to new style. For each function panel window, the window help text is transferred to the first
function, unless the function already has help text.

• Generate Function Prototypes creates an untitled .h window containing prototypes for the
functions in the function tree.

• Generate Documentation creates a window containing a .doc file for the function panel
file.

• Generate Windows Help creates a project file (.hpj) and 2 source files (.rtf and .whh)
that can be used with Microsoft Windows Help Compiler to create a Windows help file. You
are prompted to choose the output language as either C or Visual Basic.

• Generate DLL Make Files (Windows 3.1 only) creates a .mak and a .def file to compile
your instrument driver C source code into a 16-bit DLL. You are prompted to specify the
target compiler, Microsoft Visual C++ or Borland C++.

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-10 © National Instruments Corporation

• Generate ODL File creates an Object Description Language (.odl) file for the instrument
driver. The .odl file can be input to the MkTypeLib program that comes with the
Microsoft OLE 2 SDK. This is useful when you create a DLL version of the instrument
driver. The MkTypeLib program creates a “type library” which describes the function entry
points in the DLL. For information on using type libraries see the OLE 2 Programmers
Reference, Volume 2, from Microsoft Press.

• The Create DLL Project (Windows 95 and Windows NT) command creates a
LabWindows/CVI project (.prj) file that can be used to create a dynamic link library
(.dll) from the program file associated with the function panel (.fp) file. When you
execute this command, you are prompted to enter a pathname for the project file. After the
file is written, you are asked if you want to load the project immediately. If you do, your
current project is unloaded. For more information on creating DLLs, see the Preparing
Source Code for Use in a DLL section in Chapter 3, LabWindows/CVI Programmer
Reference Manual in this document.

• VXIplug&play Style (Windows 95/NT) affects the contents of the DLL project that you
create using the Create DLL Project command. If the VXIplug&play Style command is
enabled, Create DLL Project adds project settings that allow the DLL, import libraries, and
distribution kit you create to conform to various aspects of the VXIplug&play specification.
You can modify all of these settings using commands the Build menu of the Project window.
The following list describes the default settings.

 – The Instrument Driver Support Only command is enabled.

 – In the Create Dynamic Link Library dialog box,

• “_32 ” is appended to the base filename of the DLL, but not to the base filename of
the import libraries.

• In the Import Library Choices dialog box, the Generate import library for all
compilers option is enabled

• In the Type Library dialog box,

 – The Add type library resource to DLL option is enabled.

 – The Include links to help file option is enabled.

 – Function panel file is set to the full pathname of the .fp file of the current
Function Tree Editor Window.

• In the Change dialog box in the Exports section.

– The Export What option is set to Include File Symbols

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-11 LabWindows/CVI Instrument Driver Guide

– The Which Project Include Files list contains the name of the include file
associated with the .fp file of the current Function Tree Editor Window

– In the Create Distribution Kit dialog box,

• The Install Run-Time Engine option is disabled. The instrument driver support
DLL is included in the file groups instead. If you need the LabWindows/CVI
Run-time Engine for the soft front panel executable, you must enable this option
manually.

• File groups are created containing all of the files that are required of a VXIplug&play
instrument driver installation. For example, only the import libraries for Visual
C/C++ and Borland C/C++ are included, and their directory names are MSC and BC.
Files that you must create independently are also named in the file groups, even if
they do not currently exist. These files are the following.

– A Visual Basic include file, which you can create using the Generate Visual
Basic Incude command in the Options menu of the Source window

– A documentation file, which you can create using the Generate Documentation
command in this menu

– A help file, which you can create using the Generate Windows Help command
in this menu and the Windows help compiler

– A knowledge base file as defined in VXIplug&play specification

– Files for a soft front panel executable (an empty file group is created for this)

– In the Advanced dialog box,

• The Use Custom Script option is enabled.

• Script Filename is set to cvi\bin\vxipnp.inf .

• Executable Filename is left empty. After you create a soft front panel executable
and add it to the soft front panel file group, click on the Select button to specify the
soft front panel executable as the Executable Filename.

• The Installation Title names are set to <instrument prefix> Instrument
Driver .

Function Tree Editor Examples

These examples teach you about creating and editing function trees, specifically the following.

• Creating a function tree with multiple classes

• Cutting and pasting functions and classes in a function tree

• Cutting and pasting functions and classes between the function trees of different drivers

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-12 © National Instruments Corporation

In this example, you create function trees and panels without writing any code.

Example—Multiple Classes in a Function Tree

In this example you create a function tree with several nested classes. Before beginning, invoke
the Function Tree Editor by selecting New, Function Tree (*.fp) from the File menu.

Create a new instrument and function tree as follows.

1. Select Instrument from the Create menu.

2. Enter the name Function Tree Examples as the Name and tree as the Prefix. Click
on OK .

3. Select Function Panel Window from the Create menu.

4. Enter the name Function 1 as the Name and fun1 as the Function Name. Click on OK .

5. Select Class from the Create menu.

6. Enter the name Class 1 as the Name. Click on OK .

7. Position the highlight on the line beneath the name Class 1 .

8. Select Function Panel Window from the Create menu.

9. Enter the name Function 2 as the Name and fun2 as the Function Name. Click on OK .

10. Select Save .FP File As from the File menu and save the file as mltcls .

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-13 LabWindows/CVI Instrument Driver Guide

The new function tree is shown in Figure 3-3.

Figure 3-3. A Sample Function Tree

To view the structure of the function tree as it is seen by the user of the driver, select the
instrument name from the Instrument menu.

Example—Cutting and Pasting Functions and Panels

Frequently, you want to copy a function in a function tree and its associated function panel to a
new position within the function tree.

Cut and paste a function within a function tree as follows.

1. Position the highlight on the name Function 1 .

2. Select Cut from the Edit menu. The function disappears from the tree and is stored on the
Clipboard.

3. Position the highlight on the name Function 2 .

4. Select Paste Above from the Edit menu. The function now appears under Class 1 .

Suppose that instead of moving the function, you want to replicate it. Because the function is still
in the Function Tree Editor Clipboard, you can move the highlight to the name Class 1 and

Function Tree Editor Chapter 3

LabWindows/CVI Instrument Driver Guide 3-14 © National Instruments Corporation

select Paste Above from the Edit menu. The name Function 1 reappears at the top of the
tree.

Note: Pasting functions and classes within the Function Tree Editor copies all items
associated with the function or class, including controls and function panel help.

Using Existing Function Panels In a New Driver

Suppose now you want to copy some of the function panels from this driver to a new driver.
Perform the following steps:

1. Select New, Function Tree (*.fp) from the File menu. A new blank function tree window
appears on the screen.

2. Select Instrument from the Create menu.

3. Name the instrument New Instrument and type new in the prefix box. Click on OK .

4. Select Function Tree from the Window menu and select the file called mltcls .

5. Position the highlight on the item Class 1 .

6. Select Copy from the Edit menu.

7. Return to the New Instrument file through the Window menu.

8. Position the highlight on the line beneath the name of the instrument.

9. Select Paste Below from the Edit menu. Class 1 and its associated functions appear in the
new tree.

When you paste a class into a new tree, all information associated with the class and the
functions of the class are retained.

Example—Editing Items in the Function Tree

In this example you edit the names displayed in the function tree. You edit all the function tree
items using the command Edit Node found in the Edit menu.

Change the name of the instrument driver and its prefix as follows:

1. Highlight New Instrument .

2. Select Edit Node from the Edit menu. The Edit Instrument Node dialog box originally used
to create the instrument appears.

Chapter 3 Function Tree Editor

© National Instruments Corporation 3-15 LabWindows/CVI Instrument Driver Guide

3. Change the name of the instrument to Tree #2 and the prefix to tree2 . Click on OK .

The changes in the instrument driver name will appear at the top of the Function Tree in the
Function Tree Editor as well as the bottom of the window. The changes to the prefix will be
reflected in the Generated Code Window in each function panel.

© National Instruments Corporation 4-1 LabWindows/CVI Instrument Driver Guide

Chapter 4
Function Panel Editor

This chapter describes how to create and modify instrument driver function panels using the
Function Panel Editor.

Invoking the Function Panel Editor

You can invoke the Function Panel Editor in two ways.

• From the Function Tree Editor

• From a function panel

The following paragraphs describe the two ways to invoke the Function Panel Editor.

Invoking from the Function Tree Editor

To invoke the Function Panel Editor from the Function Tree Editor:

1. Highlight the function corresponding to the function panel you want to edit.

2. Select Edit Function Panel Window from the Edit menu on the Function Tree Editor menu
bar.

You can also invoke the Function Panel Editor with the shortcut key, F8, or by double-clicking
on the function name.

Invoking from a Function Panel

To edit a function panel that you are currently operating, select Edit Function Panel Window
from the Options menu in the Function Panel menu bar. If the current function panel is a
LabWindows/CVI library function panel, you cannot use the Edit Panel command.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-2 © National Instruments Corporation

The Function Panel Editor Menu Bar

When you invoke the Function Panel Editor to create a new function panel, a screen similar to
Figure 4-1 appears.

Figure 4-1. The Function Panel Editor

The following items appear on the function panel.

• The Function Panel Editor menu bar appears at the top of the screen above the function
panel.

• The Instrument Name and Function Name appear in the title bar of the function panel
window.

• The Function Code Name appears in the title bar of the function panel.

• The Function Code Name appears with an empty argument list in the Generated Code
window, below the Function Panel Editor window.

You have the following options in the Function Panel Editor menu bar.

• File lets you create a new function tree, edit an existing function tree, save function panel
information into a .fp file on disk, or add function panels to a project.

• Edit lets you modify controls, panels, and functions, add context-sensitive help information,
or align and distribute objects.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-3 LabWindows/CVI Instrument Driver Guide

• Create lets you add controls, function panels, or a common control panel to the function
panel window.

• View lets you select another panel in the current instrument or from the panel list.

• Instrument lets you select a panel that you want to edit from a different instrument driver.

• Window lets you select which window to make active.

• Options lets you invoke the Function Tree Editor, operate the function panel, or toggle the
scroll bars.

File

The File menu lets you create a new function tree, edit an existing function tree, save function
panel information into a .fp file on disk, or add function panels to a project. The File menu
operates like the File menu of the Project window. Chapter 3, The Project Window, of the
LabWindows/CVI User Manual, gives more information about the File menu.

Edit

The Edit menu lets you edit the objects on a function panel window. You have the following
options in the Edit menu.

• Cut Controls deletes the highlighted controls and copies them to the Clipboard.

• Copy Controls copies the highlighted controls to the Clipboard.

• Paste inserts the contents of the Clipboard into the highlighted function panel.

• Cut Panel deletes the highlighted panel from the function panel window and copies it to the
Clipboard.

• Copy Panel copies the highlighted panel to the Clipboard.

• Edit Control... lets you edit attributes of a control.

• Change Control Type... lets you change the type of an existing control.

• Edit Function... lets you edit a function.

• Alignment lets you align controls on a function panel.

• Align Horizontal Centers repeats your previous alignment operation.

• Distribution lets you distribute controls on a function panel.

• Distribute Vertical Centers repeats your previous distribution operation.

• Control Help lets you create or modify help information for a specific control.

• Function Help or Window Help lets you create or modify help information for the function.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-4 © National Instruments Corporation

Cut Controls

The Cut Controls command removes the selected controls from the function panel and places
the controls and their associated help information on the Clipboard.

Note: The contents of the Clipboard stay in place when you change panels.

Copy Controls

The Copy Controls command copies the selected controls and their associated help information
to the Clipboard.

Note: The contents of the Clipboard stay in place when you change panels.

Paste

The Paste command copies objects from the Clipboard and places them on a function panel
window. You can paste the same object as many times as you need to.

You cannot paste a return value control on a function panel that already contains one. A function
panel can contain only one return value control.

Cut Panel

The Cut Panel command removes the selected panel from the function panel window and places
the panel, its controls, and all of the associated help information on the Clipboard.

Note: The contents of the Clipboard stay in place when you change function panel windows.

Copy Panel

The Copy Panel command copies the selected panel, its controls, and all of the associated help
information to the Clipboard.

Note: The contents of the Clipboard stay in place when you change function panel windows.

Edit Control...

You can modify an existing control with Edit Control When you select Edit Control , you see
the same series of dialog boxes used to create the control. The Create section later in this
chapter discusses the proper use of these dialog boxes.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-5 LabWindows/CVI Instrument Driver Guide

Change Control Type...

You can change the type of a control with Change Control Type When you select Change
Control Type, a dialog box appears listing the available control types.

Select the desired control type from the dialog box. When you select a new control type, you see
the same series of dialog boxes that you used to create the control. The Create section later in
this chapter gives more information about using these dialog boxes.

If you change a control type from slide to ring, or vice versa, the new control type retains the
option list associated with the old control.

Edit Function...

You can modify an existing function panel with Edit Function When you select Edit Function,
you see the same series of dialog boxes you used to create the panel. The Create section later in
this chapter discusses the proper use of these dialog boxes.

Alignment

Alignment lets you align a set of highlighted controls. The Alignment command operates like
the Alignment command in the User Interface Editor. Chapter 2, User Interface Editor
Reference, of the LabWindows/CVI User Interface Reference Manual, gives more information
about the Alignment command.

Align Horizontal Centers

Align Horizontal Centers repeats your previous alignment operation. The Align Horizontal
Centers command operates like the Align Horizontal Centers command in the User Interface
Editor. Chapter 2, User Interface Editor Reference, of the LabWindows/CVI User Interface
Reference Manual, gives more information about the Align Horizontal Centers command.

Distribution

Distribution lets you distribute a set of highlighted controls. The Distribution command
operates identically to the Distribution command in the User Interface Editor. Refer to
Chapter 2, User Interface Editor Reference, of the LabWindows/CVI User Interface Reference
Manual, for information about the Distribution command.

Distribute Vertical Centers

Distribute Vertical Centers repeats the previous distribution. The Distribute Vertical Centers
command operates like the Distribute Vertical Centers command in the User Interface Editor.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-6 © National Instruments Corporation

Chapter 2, User Interface Editor Reference, of the LabWindows/CVI User Interface Reference
Manual, gives more information about the Distribute Vertical Centers command.

Control Help

You can add or modify context-sensitive help information for a particular control with Control
Help. Chapter 5, Adding Help Information, gives more information about adding help to a
function panel.

Function Help or Window Help

You can add or modify context-sensitive help information for the entire function panel with
Function Help or Window Help. Function Help corresponds to New style help and Window
Help corresponds to Old style help. See Chapter 3, The Function Tree Editor, for more
information on how to set the help style of the instrument driver. See Chapter 5, Adding Help
Information, for more information about adding help to a function panel.

Create

The Create menu lets you add controls to a function panel. There are nine control types in the
Create menu: input, slide, binary, ring, numeric, output, return value, global variable, and
message.

Function Panel Window, Function Panel, and Common Control Panel

The function panel window is a collection of panels that represent all functions that users can
interactively call from that window. Two types of panels are associated with a function panel
window: function panels and common control panels. You can create controls on either type of
panel.

Function panels graphically represent a single function in the function panel window. Function
panels may contain any of the nine different control types. A function panel may only have one
return value control. The function panel window may contain more than one function panel.

A common control panel contains controls that are common to all functions represented by
function panels in the function panel window. Controls on the common control panel appear as
the first parameter of every function associated with a function panel window. A function panel
window can contain only one common control panel. You could use a common control with an
instrument driver that allows multiple instruments of the same model type to exist on a GPIB
board. In this case, the common control panel can contain a control which is an index to specify
which instrument is addressed.

Note: In general, we recommend that you have only one function panel per window and no
common control panels.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-7 LabWindows/CVI Instrument Driver Guide

Control Types

Use the Create menu to create the following control types for your function panels, as shown in
Figure 4-2.

Figure 4-2. Control Types

Input...

An input control accepts a variable name or value entered from the keyboard. When you select
Input from the Create menu, the dialog box shown in Figure 4-3 appears.

Figure 4-3. The Create Input Control Dialog Box

You see the following items in the dialog box.

• Control Label specifies the label that appears above the control on the panel.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-8 © National Instruments Corporation

• Parameter Position lets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

• Data Type lets you select the data type of the item entered in the input control. The data
type can be one of any of the data types listed in the Data Types section in Chapter 2,
Developing an Instrument Driver.

• Default Value specifies the default for the input control, which should be a valid value, a
constant name, or any other valid C expression.

• Control Width lets you the specify the width of the control in pixels. The minimum allowed
is 24. The maximum allowed is 2048.

Slide...

A slide control looks like a mechanical slide switch. A slide control specifies a parameter value
depending upon the position of the cross-bar of the slide control. When you select Slide from
the Create menu, the dialog box shown in Figure 4-4 appears.

Figure 4-4. The Create Slide Control Dialog Box

You see the following items in the dialog box.

• Control Label specifies the label that appears above the control on the function panel.

• Parameter Position lets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-9 LabWindows/CVI Instrument Driver Guide

in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

• Data Type lets you select the data type of the values in the slide control. The data type can
be one of any of the data types listed in the Data Types section in Chapter 2, Developing an
Instrument Driver.

• Default Value lets you select the default for the slide control, which must be one of the
labels specified in the Edit Label/Value Pairs dialog box.

When you press the Label/Value Pairs button, the Edit Label/Value Pairs dialog box shown in
Figure 4-5 appears.

Figure 4-5. The Edit Label/Value Pairs Dialog Box

Use this dialog box to specify the label and value associated with each cross-bar position on the
slide control. A slide control can have up to 32 labels and associated values.

You see the following items in this dialog box.

• Label specifies a label that appears on the slide control.

• Value specifies the value, constant name, or expression associated with the label entered in
the Label text box.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-10 © National Instruments Corporation

• The list box below the Label and Value text boxes displays the labels and the values of items
that appear on the slide control.

Adding a Label and Value to the Slide Control List

Add a label to the slide control list as follows.

1. Type the label in the Label text box, and press <Enter>. The highlight moves to the Value
text box.

2. Type the value in the Value text box. You may use a constant name or any other valid C
expression.

3. Press <Enter> to add the label and value to the slide control list.

The program adds the label and value after the label and value line that is highlighted in the list
box.

Dialog Box Command Buttons

You perform all operations on the items in the list box by entering information into the Label and
Value text boxes and selecting one of the command buttons above or to the right of the list box in
the dialog box. You can select the following command buttons.

• Below inserts a blank line below the highlighted line in the list box.

• Above inserts a blank line above the highlighted line in the list box.

• Cut removes the highlighted line from the list and places it in the Clipboard.

• Copy copies the highlighted line to the Clipboard.

• Paste inserts the label and value line contained in the Clipboard below the highlighted line in
the list box.

• OK accepts the entries in the list box, then removes the dialog box.

• Cancel command cancels changes, removes the current dialog box from the screen, and
returns you to the Create Slide Control dialog box.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-11 LabWindows/CVI Instrument Driver Guide

Binary...

A binary control operates like a mechanical on/off switch. A binary control gives a parameter
value one of two predefined values, depending upon whether the control is in the up or down
position. When you select Binary from the Create menu, the dialog box shown in Figure 4-6
appears.

Figure 4-6. The Create Binary Control Dialog Box

You see the following items in the Create Binary Control dialog box.

• Control Label specifies the label that appears above the control on the panel.

• Parameter Position lets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

• Data Type lets you select the data type of the values in the binary control. The data type
can be one of any of the data types listed in the Data Types section in Chapter 2, Developing
an Instrument Driver.

• Default Value lets you select the default for the binary control, which must be either the On
or Off label.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-12 © National Instruments Corporation

When you select the On/Off Settings button the Edit On/Off Settings dialog box shown in
Figure 4-7 appears.

Figure 4-7. The Edit On/Off Settings Dialog Box

• ON Text specifies the label that appears next to the upper (on) position of the binary control.

• OFF Text specifies the label that appears next to the lower (off) position of the binary
control.

• ON Value specifies the value, constant name, or expression associated with the On label.

• OFF Value specifies the value, constant name, or expression associated with the Off label.

Ring...

A ring control shows the user an option list. A ring control displays only one item at a time from
its list of options. When you select Ring from the Create menu, the dialog box shown in
Figure 4-8 appears.

Figure 4-8. The Create Ring Control Dialog Box

You see the following items in the Create Ring Control dialog box.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-13 LabWindows/CVI Instrument Driver Guide

• Control Label specifies the label that appears above the control on the function panel.

• Parameter Position lets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the parameter
list after the controls in the common control panel. The first position after the controls in the
common control panel is one (1). If there is no common control panel, the first position is
one (1).

• Data Type lets you select the data type of the values in the ring control. The data type can
be one of any of the data types listed in the Data Types section in Chapter 2, Developing an
Instrument Driver.

• Default Value lets you select the default for the ring control, which must be one of the labels
specified in the Edit Label/Value Pairs dialog box.

• Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2048.

When you press the Label/Value Pairs button the Edit Label/Value Pairs dialog box shown in
Figure 4-9 appears.

Figure 4-9. The Ring Control Edit Label/Value Pairs Dialog Box

Use this dialog box to specify the label and value associated with each entry in the ring control.
A ring control can have up to 32000 labels and associated values.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-14 © National Instruments Corporation

You see the following items in this dialog box.

• Label specifies a label that appears on the ring control.

• Value specifies the value, constant name, or expression associated with the label entered in
the Label text box.

• The list box below the Label and Value text boxes displays the labels and the values of items
that appear on the ring control.

Adding a Label and Value to the Ring Control List

Add a label to the ring control list as follows.

1. Type the label in the Label text box, and press <Enter>. The highlight moves to the Value
text box.

2. Type the value in the Value text box. You may use a constant name or any other valid C
expression.

3. Press <Enter> to add the label and value to the ring control list.

The program adds the label and value after the label and value line that is highlighted in the list
box.

Dialog Box Command Buttons

You perform all operations on the items in the list box by entering information into the Label and
Value text boxes and selecting one of the command buttons above or to the right side of the list
box. You can select the following command buttons.

• Below inserts a blank line below the highlighted line in the list box.

• Above inserts a blank line above the highlighted line in the list box.

• Cut removes the highlighted line from the list and places it in the Clipboard.

• Copy copies the highlighted line to the Clipboard.

• Paste inserts the label and value line contained in the Clipboard below the highlighted line in
the list box.

• OK accepts the entries in the list box, then removes the dialog box.

• Cancel command cancels changes, removes the current dialog box from the screen, and
returns you to the Create Ring Control dialog box.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-15 LabWindows/CVI Instrument Driver Guide

Numeric...

A numeric control is an input control that lets you increment a control using the up and down
arrows. When you select Numeric from the Create menu, the dialog box shown in Figure 4-10
appears.

Figure 4-10. The Create Numeric Control Dialog Box

You see the following items in the Create Numeric Control dialog box.

• Control Label specifies the label that appears above the control on the function panel.

• Parameter Position lets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

• For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

• Data Type lets you select the data type of the values in the numeric control. You can choose
from the following data types,

int
short
char
unsigned int
unsigned short
unsigned char
double
float

or choose a user-defined data type for which you have specified an intrinsic type.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-16 © National Instruments Corporation

• Default Value lets you select the default for the numeric control, which must be a valid
member of the value set.

• Display Format lets you select the output format. For integer types, the options are
Decimal, Hexadecimal, Octal, or ASCII. For double types, the options are Scientific and
Floating Point.

When you press the Value Set button the Edit Value Set dialog box shown in Figure 4-11
appears.

Figure 4-11. The Edit Value Set Dialog Box

You see the following items in the Edit Value Set dialog box.

• Minimum lets you select the minimum value the numeric control accepts.

• Maximum lets you select the maximum value the numeric control accepts.

• Inc Value lets you select the amount the numeric control value increments or decrements
when the user presses the up or down arrows. The value in Inc Value must divide evenly into
the range of the numeric control.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-17 LabWindows/CVI Instrument Driver Guide

Output...

An output control displays the results of a function call. When you select Output from the
Create menu, the dialog box shown in Figure 4-12 appears.

Figure 4-12. The Create Output Control Dialog Box

You see the following items in the Create Output Control dialog box.

• Control Label specifies the label that appears above the control on the panel.

• Parameter Position lets you select the location of the control value in the function parameter
list. For a control in a common control panel, Parameter Position specifies the control value
in the parameter lists of all function panels in a function panel window. The first position is
one (1).

For a control on a function panel, Parameter Position specifies the control value in the
parameter list after the controls in the common control panel. The first position after the
controls in the common control panel is one (1). If there is no common control panel, the
first position is one (1).

• Data Type lets you select the data type of the variable or value displayed in the output
control. The data type can be one of any of the data types listed in the Data Types section in
Chapter 2, Developing an Instrument Driver.

• Display Format lets you select the format in which values in the output control are
displayed. You can display integers, longs, shorts, and chars in decimal, hexadecimal, octal
or ASCII. You can display doubles and floats in either scientific or floating-point notation.
If the data type is char * , void * , a meta data type, or an array, the display format
control is not valid.

• Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2084.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-18 © National Instruments Corporation

Return Value...

A return value control displays a value returned from a function. You can use a return value
control only if the function has a non-void data type. When you select Return Value from the
Create menu, the dialog box shown in Figure 4-13 appears.

Figure 4-13. The Create Return Value Control Dialog Box

You see the following items in the Create Return Value Control dialog box.

• Control Label specifies the label that appears above the control on the function panel.

• Data Type lets you select the data type of the variable or value displayed in the return value
control. The data type can be any data type other than an array type or a meta data type.

• Display Format lets you select the format in which values in the return control are displayed.
You can display integers, longs, shorts, and chars in decimal, hexadecimal, octal or ASCII.
You can display doubles and floats in either scientific or floating-point notation. If the data
type is char * or void * , the display format control is not valid.

• Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2048.

Global Variable...

A global variable control displays the value of a global variable defined in LabWindows/CVI
when users operate the function panel. When you select Global Variable from the Create
menu, the dialog box shown in Figure 4-14 appears.

Figure 4-14. The Create Global Variable Control Dialog Box

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-19 LabWindows/CVI Instrument Driver Guide

You see the following items in the Create Global Variable Control dialog box.

• Control Label specifies the label that appears above the control on the panel.

• Global Variable Name specifies the name of the variable whose contents are shown in the
global control.

• Data Type lets you select the data type of the item entered in the input control. The data
type can be one of any of the data types listed above in the Data Types section in Chapter 2,
Developing an Instrument Driver.

• Display Format lets you select the format in which values in the global variable control are
displayed. You can display integers, longs, shorts, and chars in decimal, hexadecimal, octal
or ASCII. You can display doubles and floats in either scientific or floating-point notation.
If the data type is char * , void * , a meta data type, or an array, the display format
control is not valid.

• Control Width lets you specify the width of the control in pixels. The minimum allowed is
24. The maximum allowed is 2048.

Message...

You can place text anywhere on the panel with a message control. This serves as an online
documentation tool for panels. When you select Message from the Create menu, a dialog box
appears. Enter the desired text into the message text control and select the OK command button.
To enter a new line in the message text control, press <Ctrl-Enter>. The text appears on the
panel and you can position it like any other control.

View

Use the View menu commands to view the current instrument driver function panels or the most
recently used function panels. The commands give easy access to function panels within an
instrument driver. Chapter 5, Using Function Panels, in the LabWindows/CVI User Manual,
gives more information on the View menu.

Instrument

Use the Instrument menu to load and edit instrument drivers, and specify which instrument
driver function panel to edit. The Instrument menu operates identically to the Instrument
menu on the Function Tree Editor menu bar. Chapter 3, The Function Tree Editor, gives more
information about the Instrument menu.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-20 © National Instruments Corporation

Window

The Window menu lets you select which window to make active. The Window menu operates
like to the Window menu of the Project window. Chapter 3, The Project Window, in the
LabWindows/CVI User Manual, gives more information about the Window menu.

Options

The Options menu lets you invoke the Function Tree Editor or operate the current function
panel. You see the following items on the Options menu.

Data Types...

The Data Types command lets you specify the names of user-defined data types. Data types you
specify with the Data Types command appear in the Data Type Ring control on the Edit Control
dialog boxes for input, slide, binary, ring, output, and global variable controls.

Note: You must define the data types specified with the Data Types command in the .h file
for the instrument driver.

When you select Data Types from the Options menu, the dialog box in Figure 4-15 appears.

Figure 4-15. The Edit Data Type List Dialog Box

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-21 LabWindows/CVI Instrument Driver Guide

The items in the Edit Data Type List dialog box are as follows.

• Type specifies the name of a user-defined data type.

• Add places the name in the Type control in the Data Type list.

• Move Up moves the highlight up one entry in the Data Type list.

• Move Down moves the highlight down one entry in the Data Type list.

• Change... displays a dialog box that prompts you to change the highlighted entry in the Data
Type list.

• Delete removes an entry in the Data Type list.

• Add Visa Types adds the special set of data types defined by the VISA I/O library.

• Done accepts edits to the Data Type list and returns to the Function Panel editor.

• Intrinsic Data Type allows you to associate each user defined data type with one of the data
types that can be used in a numeric control. If you select an item other than None, you will
be able to use the user-defined data type as the data type for a numeric control.

Toolbar...

The Toolbar command displays a dialog box that prompts you to select which icons appear in
the function panel editor toolbar.

Default Panel Size

The Default Panel Size command sizes and positions the function panel so that it exactly fills up
the default function panel window size.

Panels Movable

The Panels Movable command lets you specify whether panels are moveable within a function
panel editor window. (They are never moveable in operate mode.)

Toggle Scroll Bars

The Toggle Scroll Bars command adds or removes horizontal and vertical scroll bars from a
function panel.

Edit Function Tree

The Edit Function Tree command invokes the Function Tree Editor.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-22 © National Instruments Corporation

Operate Function Panel

The Operate Function Panel command lets you operate the current function panel window.

Moving Controls

When you create a control, the new control always appears in the same location on the function
panel. You can position a control anywhere on a function panel.

Move a control using the keyboard as follows:

1. Press <Page Up> and <Page Down> to move the highlight to the function panel that contains
the control.

2. Press the <Tab> key to move the highlight to the control.

3. Press the arrow keys to move the control up, down, left or right to the desired location. Press
<Ctrl> and the arrow keys to position the control precisely.

To move a control using the mouse, click the mouse button on the control you want to move and
drag the control to the desired location.

Moving Controls between Function Panels

You can move a control from one function panel page to another using the Clipboard.

Move a control from one page to another as follows:

1. Highlight the desired control.

2. Select Cut Controls from the Edit menu.

3. Move to the new function panel.

4. Select Paste from the Edit menu.

Selecting Multiple Controls

To select multiple controls, click and drag the mouse selector box around the controls you wish
to select.

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-23 LabWindows/CVI Instrument Driver Guide

Function Panel Editor Examples

The following examples teach you about creating and editing function panel windows,
specifically the following.

• Creating a function panel window with one function panel

• Creating controls on a function panel

• Changing the type of a control

• Cutting and pasting controls on a panel and between panels

You create only function panels in this example without writing any code.

Example—Creating a Function Window

In this example you create a function panel. The example panel controls an oscilloscope with
two channels, and configures the vertical sensitivity, coupling, and invert setting of the
oscilloscope.

Follow these steps to create a new instrument and panel:

1. Select the Function Tree (*.fp) option of the New command from the File menu.

2. Select Instrument from the Create menu.

3. Enter Function Panel Examples as the Name and panel as the Prefix. Click on
OK .

4. Select Function Panel Window from the Create menu.

5. Enter Configure as the Name and config as the Function Name. Click on OK .

6. Highlight the item Configure in the function tree and select Edit Function Panel
Window from the Edit menu. A new function panel window containing a single function
panel appears on the screen. Notice that the code name of the function appears in the
Generated Code window, preceded by the prefix.

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-24 © National Instruments Corporation

7. Select Binary from the Create menu.

8. Complete the Create Binary Control dialog box as shown in Figure 4-16.

Figure 4-16. The Channel Create Binary Control Dialog Box

9. Press the On/Off Setting button and complete the Edit On/Off Settings dialog box as shown
in Figure 4-17. Position the control on the panel.

Figure 4-17. The Channel Edit On/Off Settings Dialog Box

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-25 LabWindows/CVI Instrument Driver Guide

10. Select Input from the Create menu.

11. Complete the Create Input Control dialog box as shown in Figure 4-18, and position the
control on the panel.

Figure 4-18. The Volts/Div Create Input Control Dialog Box

12. Select Slide from the Create menu.

13. Complete the Create Slide Control dialog box as shown in Figure 4-19.

Figure 4-19. The Coupling Create Slide Control Dialog Box

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-26 © National Instruments Corporation

14. Press Label/Value Pairs, and complete the Edit Label/Value Pairs dialog box as shown in
Figure 4-20, and position the control on the panel.

Figure 4-20. The Coupling Edit Label/Value Pairs Dialog Box

15. Select Binary from the Create menu.

16. Complete the Create Binary Control dialog box as shown in Figure 4-21.

Figure 4-21. The Invert Create Binary Control Dialog Box

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-27 LabWindows/CVI Instrument Driver Guide

17. Press the On/Off Settings button and complete the Edit On/Off Settings dialog box as shown
in Figure 4-22. Position the control on the panel.

Figure 4-22. The Invert Edit On/Off Settings Dialog Box

You now see the function panel shown in Figure 4-23.

Figure 4-23. A Function Panel Window

Example—Changing Control Type

In this example, you change the type of the Volts/Div control from an input control to a slide
control. Follow these steps:

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-28 © National Instruments Corporation

1. Be sure the function panel window from the previous example is active, in Edit mode.
Position the highlight on the Volts/Div control.

2. Select Change Control Type from the Edit menu. The dialog box shown in Figure 4-24
appears.

Figure 4-24. The Change Input Control Type Dialog Box

3. Select Slide. The Edit Slide Control dialog box appears.

4. Select Label/Value Pairs. The Edit Label/Value Pairs dialog box appears.

5. Complete the dialog box as shown in Figure 4-25.

Figure 4-25. The Volts/Div Edit Label/Value Pairs Dialog Box

Chapter 4 Function Panel Editor

© National Instruments Corporation 4-29 LabWindows/CVI Instrument Driver Guide

After you complete the slide control dialog box, select OK to replace the Volts/Div input control
with a slide control.

Suppose that you meant this control to be a ring control instead of a slide control. Follow these
steps:

1. Position the highlight on the Volts/Div control.

2. Select Change Control Type from the Edit menu.

3. Select Ring. The Edit Ring dialog box appears.

4. Select Label/Value Pairs, leaving all items unchanged. The Edit Label/Value Pairs dialog
box appears. Notice that the slide control label value pairs remain.

5. Select OK .

A ring control replaces the Volts/Div slide control on the function panel.

Example—Cutting and Pasting Controls

You will frequently want to cut and paste controls. In this example, you copy controls from one
panel to another. Perform the following steps to copy a control:

1. Be sure the function panel from the previous example is active and in the Edit mode.
Position the highlight on the Volts/Div control.

2. Select Control Help from the Edit menu or click the secondary mouse button on the control.

3. Enter the following text in the Help Editor dialog box:

This control specifies the volts per division setting of the oscilloscope.

4. Select Save .FP File and then select Close from the File menu of the Help Editor dialog box.

5. With the highlight still on the Volts/Div control, select Copy Controls from the Edit menu.

6. Select Paste from the Edit menu.

7. With the highlight on the new control, select Edit Control from the Edit menu.

8. Change the Ring Control Label to Volts/Div 2 and the parameter position to 2.

Notice in the Generated Code window that the config function now has an additional parameter,
Volts/Div 2 .

Function Panel Editor Chapter 4

LabWindows/CVI Instrument Driver Guide 4-30 © National Instruments Corporation

Create a new function panel and copy a control to the panel as follows:

1. Select Edit Function Tree from the Options menu.

2. Create a function panel window with the following parameters. Type New Panel in the
Name box and new_panel in the Function Name box.

3. Position the highlight on the function name Configure .

4. Select Edit Function Panel Window from the Edit menu to return to the Configure panel.

5. Position the highlight on the control Volts/Div 2.

6. Select Cut Controls from the Edit menu.

7. Press <Ctrl-Page Down> to move to the New Panel function panel.

8. Select Paste from the Edit menu.

The control appears on the panel. View the help information by selecting Control Help from the
Edit menu. Notice that the help information is copied with the control.

© National Instruments Corporation 5-1 LabWindows/CVI Instrument Driver Guide

Chapter 5
Adding Help Information

This chapter describes the types of help information available from an instrument driver and how
you can create help information.

New Style vs. Old Style Help

LabWindows/CVI has two styles of online help for instrument drivers: New (Recommended) and
Old (LabWindows DOS). The Old help style maintains compatibility with help information
created in LabWindows version 2.3 or earlier. This help style uses the DOS/IBM character set so
that it can display special extended ASCII characters used by older instrument drivers.

The new help screen style uses the standard Windows character set and automatically displays
the control help with control name and data type information.

There is also a difference in the type of help information that can be displayed. In either New or
Old style help, you can view Instrument help, Function Class help, and Control help. However,
the help information for functions is displayed differently between the two styles. This difference
has an effect only when you have multiple function panels on a single function panel window. In
the New style, you can access Function help for each function panel. In the Old style, you can
access the Function Panel Window help, which describes all of the functions contained in that
function panel window.

We recommend that you use the New help style for all help information for instrument drivers
created in LabWindows/CVI. Chapter 3, The Function Tree Editor, gives more information on
New and Old style help. Most of the discussion in this chapter assumes you are using the New
style help.

Adding Help Information Chapter 5

LabWindows/CVI Instrument Driver Guide 5-2 © National Instruments Corporation

Help Options

The user of an instrument driver can view the following types of help information.

Table 5-1. Types of Help Information

Type of help Location of help

Instrument help function class and function help dialog boxes

Function class help dialog box that appears when a user selects an
instrument from the Instrument menu

Function help
(New style help only)

Help menu in the function panel window
menu bar

Function panel window help dialog box that appears when a user selects an
instrument from the Instrument menu
(Directly editable only in Old style help. In the
New style help, it is generated from the
function help for each function in the window)

Control help Help menu in the function panel window
menu bar

Editing Help Information

There are four types of help information that you can enter: instrument, class, function, and
control. You can edit instrument and class help from the Function Tree Editor and function and
control help from the Function Panel Editor. Each of the editors has an Edit menu in the menu
bar. Edit Help in the Edit menu of the Function Tree Editor lets you add instrument and class
help. Function Help and Control Help in the Edit menu of the Function Panel Editor let you
add function panel and control help. Help information should always be added in the new style.

Add help information as follows.

1. From either the Function Tree Editor or the Function Panel Editor, place the highlight on the
item that you want to enter help information.

Chapter 5 Adding Help Information

© National Instruments Corporation 5-3 LabWindows/CVI Instrument Driver Guide

2. Select Edit Help, Function Help, or Control Help from the Edit menu in the menu bar. The
dialog box shown in Figure 5-1 appears.

Figure 5-1. The Help Editor Dialog Box

The Help Editor dialog box contains a scrollable text box. Enter help text in the dialog box as
you do in the Program or Interactive window. You can scroll the displayed text using the arrow
keys or the scroll bars.

You see the following items on the Help Editor dialog box menu bar.

• File lets you load, save, and manipulate files.

• Edit lets you edit the help text entered in the dialog box.

• Window lets you specify which window to make active.

File

The File menu lets you create a new function tree, edit an existing function tree, save function
panel information into a .fp file on disk, or add function panels to a project. The File menu
operates like the File menu of the Project window. Chapter 3, The Project Window, in the
LabWindows/CVI User Manual, gives more information about the File menu.

Adding Help Information Chapter 5

LabWindows/CVI Instrument Driver Guide 5-4 © National Instruments Corporation

Edit

You see the following items in the Edit menu.

• Cut deletes the highlighted text in the dialog box and copies the text to the Clipboard.

• Copy copies the highlighted text in the dialog box to the Clipboard without deleting the
highlighted text.

• Paste inserts the contents of the Clipboard into the dialog box at the location of the cursor.

• Delete discards the highlighted text in the dialog box without copying it to the Clipboard.

• Revert returns the most recently saved version of help text to the dialog box.

Window

The Window menu lets you select which window to make active. The Window menu operates
like the Window menu of the Project window. Chapter 3, The Project Window, in the
LabWindows/CVI User Manual, gives more information about the Window menu.

Instrument Help

You can select the Instrument Help button to see help information about an instrument when
you are viewing help information for a function class or function panel window.

You can add instrument help information in the Function Tree Editor. Follow these steps to enter
the help information for the instrument:

1. From the Function Tree Editor, highlight the instrument name at the top of the function tree.

2. Select Edit Help from the Edit menu. The Help Editor dialog box appears. Alternatively,
you can click on the instrument name with the right mouse button to display the Help Editor
dialog box.

3. Enter the desired help text into the Help dialog box.

Function Class Help

To display help information about a class of function panel windows, highlight the class in the
Select Function Panel dialog box and select the Help button.

You enter function class help information from the Function Tree Editor. Follow these steps to
add help information.

1. Highlight the desired class.

Chapter 5 Adding Help Information

© National Instruments Corporation 5-5 LabWindows/CVI Instrument Driver Guide

2. Select Edit Help from the Edit menu in the Function Tree Editor menu bar. The Help Editor
dialog box appears. Alternatively, you can click on the desired control with the right mouse
button to display the Help Editor dialog box.

3. Enter the desired help text into the Help dialog box.

Function Help (New Style Help Only)

When you are in the New help style mode, you can display help information pertaining to a
specific function panel by selecting Function from the Help menu in the Function Panel menu
bar. Alternatively, you can click on the background of the desired function panel with the right
mouse button to display the function panel help.

When you are in the New help style mode, you enter function panel help information from the
Function Panel Editor. Follow these steps to add function panel help:

1. Activate the desired function panel.

2. Select Function Help from the Edit menu in the Function Panel Editor menu bar. The Help
Editor dialog box appears. Alternatively, you can click on the background of the desired
function panel with the right mouse button to display the Help Editor dialog box.

3. Type appropriate help text into the Help dialog box.

Chapter 3, The Function Tree Editor, gives more information on changing between the New and
Old style help modes.

Function Panel Window Help (Old Style Help Only)

In the Old help style mode, you can display help information pertaining to a function panel
window by selecting Window from the Help menu in the Function Panel menu bar.
Alternatively, you can click on the background of the function panel window with the right
mouse button to display the function panel help.

In the Old help style mode, you enter function panel window help information from the Function
Panel Editor. Follow these steps to add function panel window help.

1. Select Window Help from the Edit menu in the Function Panel Editor menu bar. The Help
Editor dialog box appears. Alternatively, you can click on the background of the function
panel window with the right mouse button to display the Help Editor dialog box.

2. Type appropriate help text into the Help dialog box.

Chapter 3, The Function Tree Editor, gives more information on changing between the New and
Old style help modes.

Adding Help Information Chapter 5

LabWindows/CVI Instrument Driver Guide 5-6 © National Instruments Corporation

Control Help

You can display help information for a specific function panel control by highlighting the control
and selecting Control from the Help menu in the Function Panel menu bar. Alternatively, you
can click on the control with the right mouse button to display the Function help.

You enter Function help information from the Function Tree Editor or the Function Panel Editor.

Add help information for a function panel control as follows.

1. Highlight the desired control.

2. Select Control Help from the Edit menu in the Function Panel Editor menu bar. The Help
Editor dialog box appears. Alternatively, you can click on the desired control with the right
mouse button to display the Help Editor dialog box.

3. Type appropriate help text into the Help dialog box.

Help Information Examples

The following examples teach you about creating and editing help information, specifically the
following.

• Adding instrument and panel help information from the Function Tree Editor

• Adding panel and control help information from the Function Panel Editor

• Cutting and pasting help information between controls

You create only function trees and panels in this example, without writing any code.

Example—Adding Help Information in the Function Tree Editor

In this example, you add instrument and function class help information to a function tree.
Follow these steps to create a new instrument and function tree.

1. Select the Function Tree (*.fp) option of the New command from the File menu.

2. Select Instrument from the Create menu.

3. Type Help Information Examples as the Name and help as the Prefix. Click on
OK .

4. Select Class from the Create menu.

5. Enter Class 1 as the Name. Click on OK .

Chapter 5 Adding Help Information

© National Instruments Corporation 5-7 LabWindows/CVI Instrument Driver Guide

6. Highlight the line beneath the name Class 1 .

7. Select Function Panel Window from the Create menu.

8. Enter Function 1 as the Name and fun1 as the Function Name. Click on OK .

The new function tree appears in Figure 5-2.

Figure 5-2. A Sample Function Tree

The first level of help information is associated with the name of the instrument driver.

Add help information to the top level of the tree as follows.

1. Position the highlight on the name Help Information Examples .

2. Select Edit Help from the Edit menu, or click on the instrument name with the right mouse
button. The Help Editor dialog box appears.

3. Enter the following help information.

This driver was created to illustrate how to add help text to an
instrument driver.

4. Select Save .FP File and then select Close from the File menu to save the text and remove
the Help Editor dialog box.

Adding Help Information Chapter 5

LabWindows/CVI Instrument Driver Guide 5-8 © National Instruments Corporation

Add help information to Class 1 as follows.

1. Position the highlight on the name Class 1 .

2. Select Edit Help from the Edit menu or click on the class name with the right mouse button.
The Help Editor dialog box appears.

3. Enter the following help information.

An example function class. The functions in this class are:
Function 1 - The only function in the class.

4. Select Save .FP File and then select Close from the File menu to save the text and remove
the Help Editor dialog box.

View the help information as follows.

1. Select Help Information Examples from the Instrument menu. The Select Function
Panel dialog box appears.

2. Highlight Class 1 and press Help to display the Class Help dialog box.

3. Press Instrument Help to display the Instrument Help dialog box.

4. Press Done to exit the Instrument Help dialog box.

5. Press Done to exit the Class Help dialog box.

6. Press Cancel to exit the Select Function Panel dialog box.

Example—Adding Help Information in the Function Panel Editor

In this example, you add help information to function panels and function panel controls from
the Function Panel Editor. Double-click on Function 1 from the previous example.
To modify the help information for the function panel, perform the following steps from the
Function Panel Editor:

1. Select Function Help from the Edit menu. The Help Editor dialog box appears.

2. Enter the following help information.

This function is the only function in Function Class.

3. Select Save .FP File and then select Close from the File menu to save the text and remove
the Help Editor dialog box.

Help information also is associated with each of the controls in a function.

Chapter 5 Adding Help Information

© National Instruments Corporation 5-9 LabWindows/CVI Instrument Driver Guide

Add a control to the current panel as follows.

1. Select Input from the Create menu.

2. Enter Input Control for the Control Label.

3. Press OK .

Now add help information to the control.

1. Highlight the control and select Control Help from the Edit menu. Alternatively, click the
right mouse button on the control. The Help Editor dialog box appears.

2. Enter the following text in the Help Editor dialog box:

This control is an input control on the Function 1 function panel.

3. Select Save .FP File and then select Close from the File menu to save the text and remove the
Help Editor dialog box.

You have now added help information to all possible locations. Select Operate Function Panel
from the Options menu and then view the help information for the function panel.

Example—Copying and Pasting Help Text

In this exercise, you copy text between function panels, controls, and instruments. The Clipboard
retains its contents as you move between controls, function panels, and even instruments. Help
text also stays with a control or function panel that is cut, copied, or pasted.
Copy the help information between controls on different panels as follows:

1. Create a new function panel window from the Function Tree Editor. Type Function 2 in
the Name box and fun2 in the Function Name box.

2. The Function 1 function panel should be on the screen in Edit mode. Double-click on
Function 1 in the Function Tree Editor.

3. Select Global Variable from the Create menu.

4. Type Status in the Control Label box and ibsta in the Global Variable Name box. Leave
all other items at their default settings. Click on OK .

5. Add the following help information to the Global Control.

This control displays the status of GPIB function calls.

Errors:
0 Success
non-zero See the STATUS control on any GPIB Library function panel

6. Select Save .FP file and then select Close from the File menu to save the text.

Adding Help Information Chapter 5

LabWindows/CVI Instrument Driver Guide 5-10 © National Instruments Corporation

7. With the highlight positioned on the Status control, select Copy Controls from the Edit
menu.

8. Press <Ctrl-Page Down> to display the Function 2 function panel.

9. Select Paste from the Edit menu. The Status control appears on the function panel.

10. Select Operate Function Panel from the Options menu and view the help information.
Notice that the help information stays with a control when you copy that control.

Copy the help text without copying the control as follows.

1. Select Edit Function Panel Window from the Options menu.

2. Select Global Variable from the Create menu.

3. Complete the Create Global Variable Control dialog box as follows. Type Error in the
Control Label box and iberr in the Global Variable Name box. Leave all other items at
their default settings. Click on OK .

4. Position the highlight on the Status control.

5. Select Control Help from the Edit menu or click the right mouse button on the control.

6. Highlight all of the text in the dialog box.

7. Select Copy from the Edit menu.

8. Select Close from the File menu.

9. Position the highlight on the Error control.

10. Select Control Help from the Edit menu or click the right mouse button on the control.

11. Select Paste from the Edit menu. The help information appears in the dialog box.

12. Modify the text so it reads as follows.

This control displays the value of the GPIB global error variable.
The control displays the value of the error only when the STATUS control is
non-zero.

 Errors:
 0 Success
 non-zero See the ERROR control on any GPIB Library function panel

In these examples, you have learned to copy or move text from one control to another. Use the
same methods to copy and move help text between any location, for example, for copying and
moving panel, instrument, window, and control help within an instrument driver or across
instrument drivers.

© National Instruments Corporation 6-1 LabWindows/CVI Instrument Driver Guide

Chapter 6
Programming Guidelines for
Instrument Drivers

This chapter gives you guidelines for creating instrument drivers and using them with one
another. If you write instrument drivers for general distribution to users, these guidelines ensure
portability and proper operation. This chapter tells you how to create an instrument driver from a
LabWindows/CVI core instrument driver.

Note: All instrument drivers in the LabWindows/CVI Instrument Library are based upon a
core instrument driver. Each of the core drivers adheres to the programming
guidelines outlined in this chapter.

General Programming Guidelines

The following guidelines relate to general programming practices.

• Base your instrument driver on an existing instrument driver or one of the core instrument
drivers.

• Avoid declaring function names that exceed 31 characters.

• Choose an instrument prefix to precede all user callable function and global variable names.
The prefix uniquely identifies the instrument driver and is specified when you create an
instrument function tree.

• Use only the VISA (Virtual Instrument Software Architecture) I/O library to perform
instrument I/O.

• Use only the VISA data types.

• Declare void any function that does not return a value. You must include a return value
control in a panel for functions that return values.

• Avoid exporting global variables to the user. If you need to do so, define the global variables
in the .c file and declare them as extern in the .h file.

• Declare static variables that are global to the instrument driver, but not needed by any
other drivers.

• Avoid declaring large arrays within instrument drivers, because arrays use large amounts of
memory.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-2 © National Instruments Corporation

• Use FmtOut , printf , and User Interface functions only in exception conditions. Ideally,
no screen I/O should occur within an instrument driver.

• Avoid using Advanced Analysis Library functions in instrument drivers. Users would need
to have the Advanced Analysis Library loaded on their computer.

• Make the base filename of the instrument driver files the same as the prefix for the
instrument driver and the base filename of the .fp file. For example, the filenames for a
driver might be tek2430a.fp , tek2430a.c , and tek2430a.h .

• Test all of the instrument drivers you create in LabWindows/CVI as standalone applications.

• Include the file vpptype.h in the include file for your instrument driver. Include the file
visa.h in the source code for your instrument driver.

• Declare all user callable function prototypes with the macro _VI_FUNC before the function
name. Declare all array and output parameters in user callable function with the macro
_VI_FAR before the parameter name.

The Core Instrument Driver

To develop instrument drivers for GPIB, VXI, and RS-232, modify a LabWindows/CVI core
instrument driver or modify an existing driver that is based upon a core instrument driver. You
create a new instrument driver by changing a core instrument driver to match the requirements of
your instrument. LabWindows/CVI gives a core instrument driver for each type of instrument.
Develop your instrument driver using a core instrument driver as a foundation. Each core
instrument contains the following files.

• The .fp file contains a function tree and function panels.

• The .c file contains the source code for developing the instrument program.

• The .h file contains function declarations and defined constants.

The core driver has a simple, flexible structure and a common set of functions to help you
develop all types of instrument drivers. Also, the core driver has template functions for all of the
required instrument driver operations. These template functions are based on IEEE 488.2
common commands. So if your instrument is IEEE 488.2 compliant, the core will require few
modifications to create a baseline driver for your instrument. The core also includes
modification instructions that make it easy to modify for use with non-IEEE 488.2 devices. The
required instrument driver functions are described in detail in Chapter 7, Required Instrument
Driver Functions.

The core also includes many useful functions, called utility functions, to create user callable
functions and to implement a simple error handling scheme. These functions can check
parameter ranges, and perform instrument I/O to and from a file. The utility functions also detect
errors and update error information. The LabWindows/CVI core instrument driver includes the
following utility functions.

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-3 LabWindows/CVI Instrument Driver Guide

• Check for Valid ViInt16 Parameter. The fl45_invalidViInt16Range function
determines whether a ViInt16 parameter lies within an acceptable range, thus preventing
the user from sending illegal commands to an instrument. The function accepts four
parameters: the ViInt16 value, the minimum, the maximum, and an error code. The return
value indicates whether the parameter lies within the valid range.

• Check for Valid ViInt32 Parameter. The fl45_invalidViInt32Range function
determines whether a ViInt32 parameter lies within an acceptable range, thus preventing
the user from sending illegal commands to an instrument. The function accepts four
parameters: the ViInt32 value, the minimum, the maximum, and an error code. The return
value indicates whether the parameter lies within the valid range.

• Check for Valid ViReal64 Parameter. The fl45_invalidViReal64Range function
determines whether a ViReal64 parameter lies within an acceptable range, thus preventing
the user from sending illegal commands to an instrument. The function accepts four
parameters: the real value, the minimum, the maximum, and an error code. The return value
indicates whether the parameter lies within the valid range.

• Check for Valid ViBoolean Parameter. The fl45_invalidViBooleanRange
function determines whether a boolean parameter lies within an acceptable range, thus
preventing the user from sending illegal commands to an instrument. The return value
indicates whether the parameter lies within the valid range.

Note: In the preceding list, the functions named are from the Fluke 45 Digital Multimeter
instrument driver. The utility functions used by the Fluke 45 instrument driver are
declared at the beginning of the program listing and the code for the utility functions is
at the end of the listing. The source code for some of the utility functions was omitted
because it is not needed to implement the Fluke 45 instrument driver.

Modifying the Core Driver

Your first step in developing the code for an instrument driver is to modify the core driver to
represent your instrument. Most of the modifications concern the instrument prefix. All
instrument driver functions have a prefix that identifies the instrument. For example, the
instrument prefix for the Fluke 45 instrument driver is fl45 . The instrument prefix is also the
prefix in the names of all files associated with the instrument driver. As a default, the core
instrument driver uses PREFIX as the instrument prefix which you must change to a prefix
unique to your instrument driver.

Modify the core driver, also given in the source code of the core instrument driver, as follows:

1. Edit the core instrument driver source code, core_gpb.c . Change all occurrences of
PREFIX to the prefix of your instrument.

2. The device-dependent commands in this file are marked with the comment CHANGE. Search
for occurrences of this comment and make appropriate changes.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-4 © National Instruments Corporation

3. Save the modified source file as instr_prefix.c .

4. Edit the core instrument driver header file, core_gpb.h . Change all occurrences of the
word PREFIX to the prefix of your instrument.

5. Save the modified header file as instr_prefix.h .

6. Edit the core instrument driver function panel file. In the Function Tree Editor window, edit
the instrument descriptor as follows. Change the current name to the name of the instrument
and change the prefix to INSTR_PREFIX.

7. Save the modified function panel file as instr_prefix.fp .

By following this procedure, you create a good framework from which you can develop your
instrument driver.

The core instrument driver files are located in the subdirectory INSTR. Their names are shown
in Table 6-1.

Table 6-1. Core Instrument Driver Files

Instrument Type Filenames Description

GPIB core_gpb.c C source code file

core_gpb.h Include file for core_gpb.c

core_gpb.fp Instrument function panel file

VXI core_vxi.c C source code file

core_vxi.h Include file for core_vxi.c

core_vxi.fp Instrument function panel file

RS-232 core_232.c C source code file

core_232.h Include file for core_232.c

core_232.fp Instrument function panel file

Adding User Callable Functions

Add user callable functions to your instrument driver to control the instrument operations that
you wish to make available to users. All user callable functions have a function panel interface,
and return error and status information. Before you write any code, develop the function panels
for all the user callable functions. We recommend that you define the structure of the driver and
each of the functions before you develop any code.

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-5 LabWindows/CVI Instrument Driver Guide

To add your new functions.

1. Insert the new functions in the appropriate positions of the function tree.

2. Edit the instrument help and all function panel help.

3. Edit the function panels. Create all function panel controls and edit all control help.

4. Declare the new functions in the instrument driver header file.

5. Insert the function code in the instrument driver source file.

6. Test the instrument driver.

Inserting the function code in the source code is the most difficult step when you are adding a
function to the instrument driver. To make this step easier, define a function code programming
structure. You can divide code writing for instrument driver functions into the following
programming steps.

1. Check input ranges of all parameters. (Utility Function)

2. Create the command string and write it to the instrument. (VISA Function)

3. Read and parse the data string from the instrument if the instrument has a response (VISA
Function)

Copy and Paste

By copying and pasting utility routines and VISA routines, you can program your driver more
efficiently. The following examples, which are based on the Fluke 45 instrument driver,
illustrate how to paste the utility and VISA functions into your user callable functions.

1. A utility function to check input parameter ranges

a. For integer parameters paste in the following code.

if (fl45 _invalidViInt16 Range (val, min, max))
return VI_ERROR_PARAMETER2;

b. For real parameters paste in the following code.

if (fl45_ invalidViReal64 Range (val, min, max))
return VI_ERROR_PARAMETER3;

2. A VISA function to write the command string to the instrument

if ((fl45_status = viPrintf(instrHandle, “:SYST:ERR?”)) < 0)
return fl45_status;

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-6 © National Instruments Corporation

3. A VISA function to read the data string from the instrument, if the instrument has a response

if ((fl45_status = viScanf (instrHandle, "%d,\"%[^\"]",
errCode, errMessage)) < 0)

return fl45_status;

You can use the remaining VISA and utility functions in the same manner. These VISA and
utility functions are the building blocks from which you build user callable functions. The
Fluke 45 instrument driver is a good example of this programming style. Most of the code in
an instrument driver consists of combinations of the previously described programming
statements. Using previously described programming statements makes instrument driver
functions easier to develop, and guarantees that your programming style matches the style of
other drivers in the library.

Note: You may Delete any unused utility functions when you complete instrument driver
development.

Tips for Creating an Instrument Driver

An important step in developing a user callable instrument driver function is selecting between
command strings to send to the instrument based on an input parameter. In the following
example, the commands AC, DC, and GND set the vertical coupling of an imaginary oscilloscope.
An integer input parameter selects from these different command strings. The following source
code configures the vertical coupling of this instrument.

/*==*/
/* This function configures the instrument */
/*==*/
ViStatus _VI_FUNC scope_config_coup (ViSession instrHandle, ViInt16 func)
{

if (scope_invalidViInt16Range (func, 0, 2) != 0)
return VI_ERROR_PARAMETER2;

switch (func) {
case 0:

scope_status = viPrintf (instrHandle, “AC”);
break;

case 1:
scope_status = viPrintf (instrHandle, “DC”);
break;

case 2:
scope_status = viPrintf (instrHandle, “GND”);
break;

}
return scope_status;

}

Notice the large case statement needed to select the different commands. The more command
options you need, the larger the case statement grows. The next example shows how you can

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-7 LabWindows/CVI Instrument Driver Guide

discard the case statement approach by defining a string array with the three different instrument
commands. The configure function then uses the string array to build the command string.

/*==*/
/* This function configures the instrument. */
/*==*/
ViStatus _VI_FUNC scope_config_coup (ViSession instrHandle, ViInt16 func)
{

static ViString cmd_arr[] = {"AC", "DC", "GND"};

if (scope_invalidViInt16Range (func, 0, 2) != 0)
return VI_ERROR_PARAMETER2;

if ((scope_status = viPrintf (instrHandle, “%s”, cmd_arr[func])) < 0)
return scope_status;

return scope_status;
}

The first example requires a case structure with three different format statements, whereas the
second example requires a single format statement that selects the appropriate command from the
cmd_arr string array. By defining a string array with the instrument commands, you use a
single format command in your user callable functions to keep the instrument driver compact and
readable.

Developing Portable Instrument Drivers

An important consideration in developing an instrument driver is making the driver accessible by
other compilers and operating systems. There are established guidelines for the development of
portable instrument driver code. The main concerns in developing portable instrument driver
code are given to data types, the declaration of user-callable functions and their output and array
parameters, and the use of Scan and Formatting functions.

Instrument Driver Data Types

A subset of the VISA data types has been defined for use in the development of
LabWindows/CVI instrument drivers and is accessible as user-defined data types. These special
data types are used to define all of the parameters of instrument driver functions. The data types
strictly define the type and size of the parameters and therefore promote the portability of the
functions to new operating systems and programming languages.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-8 © National Instruments Corporation

Table 6-2. VISA Data Types

VISA Type Name Definition

ViInt16 Signed 16-bit integer

ViInt32 Signed 32-bit integer

ViReal64 64-bit floating point number

ViInt16[] An array of ViInt16 values

ViInt32[] An array of ViInt32 values

ViReal64[] An array of ViReal64 values

ViChar[] A string

ViRsrc A VISA resource descriptor (string)

ViSession A VISA session handle

ViStatus A VISA return status type

ViBoolean Boolean value

ViBoolean[] An array of ViBoolean values

Declaring Instrument Driver Functions and Array and Output Parameters

The VISA I/O library also defines macros that are useful for prototyping the user callable
functions of an instrument driver. These macros are listed below.

Table 6-3. VISA I/O Library Macros

Macro

CVI
Environment
(Windows 3.1)

Outside the CVI
Environment
(Windows 3.1)

Windows
95/NT UNIX

_VI_FUNC _pascal _far _pascal _export __stdcall

_VI_FAR _far

The macros have been designed to resolve the differences on Windows between using instrument
driver functions in a LabWindows/CVI environment as opposed to using them with an external
compiler. The _VI_FUNC macro is used to define the calling conventions of a function.

The _VI_FAR macro is used to define all output and array parameters used in a user-callable
function.

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-9 LabWindows/CVI Instrument Driver Guide

An example of an instrument driver function prototype using the above datatypes and macros is
shown below.

ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,
ViReal64 _VI_FAR wvfm[],
ViReal64 _VI_FAR *xin,
ViReal64 _VI_FAR *trig_off);

Using Scan and Fmt Functions

In devices that manipulate large arrays of data, such as oscilloscopes or arbitrary waveform
generators, the instrument driver developer usually transfers data from computer to instrument or
from instrument to computer in a binary format to improve throughput and performance. When
you transfer data in a binary format, you must manipulate arrays of binary data, typically integer
arrays. Under normal circumstances, manipulating arrays of binary data is not a problem.
However, the differences between operating systems and programming languages in which the
drivers might be used in the future require more attention in this area. Specifically,
LabWindows/CVI is a multi-platform application and must account for byte ordering on different
platforms. With this in mind, you must give special consideration to code segments that handle
binary instrument data.

Listed below are important rules for developing portable instrument driver code using Scan and
Fmt functions.

1. If you are using a Scan or Fmt statement to manipulate binary data that has been received
from an instrument or that will be sent to an instrument, use an o modifier on the side of the
Scan or Fmt statement that represents the binary data.

The o modifier describes the byte ordering in relation to Intel ordering.

Example: Intel [o01]
Motorola [o10]

2. Whenever you are scanning or formatting binary data, use an array of either type short ,
long , or one of the VISA data types, rather than simply int . The representations of shorts,
longs, and the VISA data types are the same on all LabWindows/CVI platforms.

3. When using a Scan or Fmt statement to scan or format data in to or out of an array of type
short , long , or one of the VISA data types, use the b modifier to represent the width of
the data. When you are scanning or formatting data in to or out of an array of type int , do
not use the b modifier to represent the width of the data.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-10 © National Instruments Corporation

The code example below shows the correct way to scan binary data read from an instrument. In
the code example, the viRead function is used to transfer the binary waveform information
from the instrument to the buffer cmd. Then a Scan function is used to parse the binary
information and place it in the ViInt16 array wavefrm . Notice that the o modifier is on the
side of the Scan statement that represents the binary data that was received from the instrument
and that a b modifier is used on both sides of the Scan function to represent the size of the
binary data and the element size of the array where the data will be placed.

ViInt16 wavefrm[4000];
ViSession instrSession;
ViInt16 NumPoints;
ViUInt32 retCnt;
ViStatus scope_status;

if ((scope_status = viRead (instrSession, cmd, 1027, &retCnt)) < 0)
return scope_status;

Scan (cmd, "%*d[zb2o10]>%*d[b2]", NumPoints, NumPoints, wavefrm);

Error Reporting Guidelines

One of the most important operations performed in an instrument driver is reporting the status of
each operation. The core driver also gives you an error/warning handling scheme. Each user
callable routine is a function with a return value of the type ViStatus which is used to return
the appropriate error or warning value.

Table 6-2 presents a scheme for determining error values. It lists predefined error codes for
instrument drivers.

Table 6-4. Suggested Error Values

Value Meaning

0 No error occurred.

Positive values Completion or warning codes such as warnings for instrument driver
features that are not supported by the device or I/O completion codes
returned from the VISA I/O libraries.

Negative values Errors that are detected in an instrument driver such as the range-
checking of function parameters or I/O errors reported by the VISA
I/O libraries.

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-11 LabWindows/CVI Instrument Driver Guide

Table 6-5. Instrument Driver Completion and Warning Codes

Completion Code Description Error Number

VI_SUCCESS No error: the call was successful

VI_WARN_NSUP_ID_QUERY Identification query not supported0x3FFC0101L

VI_WARN_NSUP_RESET Reset not supported 0x3FFC0102L

VI_WARN_NSUP_SELF_TEST Self-test not supported 0x3FFC0103L

VI_WARN_NSUP_ERROR_QUERYError query not supported 0x3FFC0104L

VI_WARN_NSUP_REV_QUERY Revision query not supported 0x3FFC0105L

Instrument-specific warnings 0x3FFC0800 to
0x3FFC0FFF

Table 6-6. Instrument Driver Error Codes

Status Description Error Numbers

VI_ERROR_FAIL_ID_QUERY Instrument identification query failed 0xBFFC0011L

VI_ERROR_INV_RESPONSE Error interpreting instrument response0xBFFC0012L

VI_ERROR_PARAMETER1 Parameter 1 out of range 0xBFFC0001L

VI_ERROR_PARAMETER2 Parameter 2 out of range 0xBFFC0002L

VI_ERROR_PARAMETER3 Parameter 3 out of range 0xBFFC0003L

VI_ERROR_PARAMETER4 Parameter 4 out of range 0xBFFC0004L

VI_ERROR_PARAMETER5 Parameter 5 out of range 0xBFFC0005L

VI_ERROR_PARAMETER6 Parameter 6 out of range 0xBFFC0006L

VI_ERROR_PARAMETER7 Parameter 7 out of range 0xBFFC0007L

VI_ERROR_PARAMETER8 Parameter 8 out of range 0xBFFC0008L

Instrument-specific errors 0xBFFC0800 to
0xBFFC0FFF

The defined names for completion and error codes in Table 6-3 and 6-4 are resolved in the file
vpptype.h . By including the file vpptype.h in your instrument driver header file, you can
use these defined names in your instrument driver and users of your driver can use them in their
application programs.

An important error situation is error VI_ERROR_INV_RESPONSE (Error in interpreting an
instrument response). This error is detected when a Scan statement tries to parse data from an
erroneous instrument response. The user-callable function tek2430a_read_waveform in
the Tektronix 2430a example instrument driver shown in Appendix A, gives a good example of
this type of error detection and reporting feature.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-12 © National Instruments Corporation

if (Scan (in_data, “%1027i[b1u]>%3i[b1]%1024f ” , header, wvfm) != 2)
return VI_ERROR_INV_RESPONSE;

In the previous code, error VI_ERROR_INV_RESPONSE is returned if the scan does not place
data in the variables, header and wvfm.

Function Panels
The function panels link the user and the user callable functions. Function panels let users
interactively control the instrument and develop application programs. You should create
function panels with the end user in mind. Make the panels look like other instrument drivers in
the LabWindows/CVI Instrument Library. Arrange controls neatly and center them on the panel.
Place the error return control in the lower right corner of every function panel. Place the
instrument ID control in the lower left corner. When your function panels resemble others in the
library, users feel more comfortable with your instrument driver.

Function Tree Hierarchy
The function tree defines the relationship between each function panel. Users think in terms of
high-level application operations such as Initialize , Configure , Measure , and so on.
Group the functions in the function tree accordingly. Make function trees from similar
instruments look similar. Multimeter drivers, oscilloscopes, and function generators should
resemble each other.

For example, the Fluke 45 instrument driver function tree is shown in Figure 6-1.

Figure 6-1. The Fluke 45 Digital Multimeter Function Tree

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-13 LabWindows/CVI Instrument Driver Guide

The functions are easy to understand and immediately incorporate into an application program.
Be sure to develop your function tree and function panels before you develop any code for your
instrument driver. Develop your function tree with an application in mind and place the
functions in the natural order in which they will be used. Again, keep your function tree
consistent with others in the LabWindows/CVI Instrument Library, so that users feel familiar
with your instrument driver.

Documentation Guidelines

Writing useful documentation is an essential step in developing instrument drivers. Proper
documentation helps the user to understand the instrument driver and its functions. Instrument
driver documentation should consist of the following.

• Online help from within LabWindows/CVI function trees and function panels

• A .doc file distributed on the disk with the instrument driver files

Online Help

Users consult the online help of an instrument driver most frequently. Relevant help information
in a consistent format makes using the instrument driver easier. Include online help at every
level of the instrument driver.

The following examples present the types of help information found in the Fluke 45 instrument
driver. Use these example help screens as a guide when editing online help for your instrument
driver.

Note: You should add help text when you create or edit the function tree or function panels.
Online help text is stored as part of the .fp file.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-14 © National Instruments Corporation

• Instrument driver help appears in dialog boxes when a user views help for a function panel
window or function class. This type of help describes the instrument driver and lists the
functions and classes of functions in the driver. Figure 6-2, shows instrument help for the
Fluke 45 instrument driver.

Figure 6-2. The Fluke 45 Instrument Help

• Function class help is available from the instrument driver pull-down menu after the function
class has been selected. Function class help briefly describes all the functions and subclasses
beneath the selected function class. Figure 6-3, shows function class help from the Fluke 45
instrument driver.

Figure 6-3. The Fluke 45 Function Class Help

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-15 LabWindows/CVI Instrument Driver Guide

• Function panel help is available from the Help menu in the Function Panel menu bar.
Function panel help describes the function call. Figure 6-4, shows the function panel help
from the Fluke 45 instrument driver.

Figure 6-4. The Fluke 45 Function Panel Help

• Control help is available from the Help menu in the Function Panel. Control help contains a
description of the parameter, the valid range, and the default value. Figure 6-5, shows an
example of function panel control help from the Fluke 45 instrument driver.

Figure 6-5. The Fluke 45 Function Panel Control Help

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-16 © National Instruments Corporation

• Status help is available from the Help menu in the Function Panel. Error help contains a
description of the parameter and the possible error values. Figure 6-6, shows an example of
status control help from the Fluke 45 instrument driver.

Figure 6-6. The Fluke 45 Function Panel Error Control Help

The .doc File

• The .doc file is an ASCII text file that contains the following information.

• A brief description of the instrument

• A function tree layout

• Assumptions made by the driver developer

• A list of global variables and constant names declared in the driver

• A list of the LabWindows/CVI libraries that are referenced in the driver

• A description of each function, including the following:

– Syntax

– Purpose

– Parameter types

– Function type

– Error codes

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-17 LabWindows/CVI Instrument Driver Guide

You should give the .doc file the same base filename as the .fp file for the instrument driver.

You can generate a .doc file using the Generate Documentation command in the Options
menu of the Function Tree Editor window.

Programming Guidelines for RS-232 Instruments

Initialization Routine

The initialization routine for an RS-232 instrument driver must open a com port using the
OpenComConfig function to specify such parameters as baud rate and parity, and set the
timeout value appropriately.

In addition, the initialization routine should perform the following steps.

1. Clear the instrument.

2. Query current operating status.

3. Send commands to place the instrument in a known state.

The initialize routine in the instrument driver core file core_232.c handles these operations
and can be modified for your instrument driver.

Close Routine

The close routine for an RS-232 instrument driver closes the com port used by the driver. The
routine should set the appropriate variables to zero to indicate that the instrument driver has been
closed. The instrument driver core file core_232.c implements a close routine that can be
modified for your instrument driver.

Utility Routines

The instrument driver core file core_232.c contains a number of utility functions. These
functions perform operations common to most RS-232 instruments, including reading and
writing to an RS-232 instrument.

Programming Guidelines for Instrument Drivers Chapter 6

LabWindows/CVI Instrument Driver Guide 6-18 © National Instruments Corporation

Programming Guidelines for VXI Instruments

Use the VXI core instrument driver to develop drivers for all message-based and register-based
VXI devices. Drivers developed with the VXI core instrument driver can control a VXI device
from either a GPIB-VXI translator, a MXI-equipped computer interface, or an embedded VXI
controller.

Instrument Driver Checklist

All instrument drivers you add to the LabWindows/CVI Instrument Library must conform to our
recommendations for programming style, error handling, function tree organization, function
panels, and online help. The following form is an abbreviated version of the form used to check
all instrument drivers that are submitted for inclusion in the LabWindows/CVI Instrument
Library. Use this form to verify that your instrument driver is complete and correct.

I. Function Tree

____ A. The structure is logical and follows the instrument driver internal design model.

____ B. All required instrument driver functions are implemented (initialize, reset, self-test,
revision, error query, and error message).

____ C. Help exists for the instrument and all functions and classes.

II. Function Panels

____ A. The controls are neatly organized.

____ B. The instrument error control is in the lower right corner.

____ C. The instrument ID control is in the lower left corner.

____ D. The proper defaults are set for each control.

____ E. The return value is consistently used for error reporting.

____ F. Notes, if any, are understandable.

____ G. The proper display format is used, such as hexadecimal for status registers, and so on.

____ H. Help:

____ 1. Exists for all controls.

____ 2. Is well formatted and includes:

____ a. Description

____ b. Default value and valid range

____ c. All needed error codes

III. Source Code

____ A. Standard instrument driver header comments are used:

____ 1. Author

____ 2. Original language

____ 3. Modifications history

____ B. Only the utility functions are declared.

Chapter 6 Programming Guidelines for Instrument Drivers

© National Instruments Corporation 6-19 LabWindows/CVI Instrument Driver Guide

____ C. All instrument driver functions make proper use of the utility functions:

____ 1. All parameter ranges are checked (_invalidViInt16Range and

_invalidViReal64Range).

____ 2. All scans check for and report errors correctly.

____ D. Errors are reported and correct error codes are used.

____ E. Complete and descriptive comments are included.

____ F. Reference tables are properly used.

____ G. visa.h is included.

____ H. Binary instrument data is scanned or formatted correctly for multi-platform use.

____ I. Prototypes for user callable functions are correctly formatted:

____ 1. All function prototypes include the macro _VI_FUNC before the function
name.

____ 2. Use only VISA datatypes for function parameters.

____ 3. All array parameters include the macro _VI_FAR before the parameter name.

IV. Include File

____ A. Only user callable instrument driver functions are declared.

____ B. The file vpptype.h is included.

____ C. Prototypes correctly formatted:

____ 1. All function prototypes include the macro _VI_FUNC before the function
name.

____ 2. Use only VISA datatypes for function parameters.

____ 3. All array parameters include the macro _VI_FAR before the parameter name.

V. Document File

____ A. The LabWindows/CVI-generated document file is properly edited.

____ B. The document file contains no redundant information such as variable name and
variable type.

© National Instruments Corporation 7-1 LabWindows/CVI Instrument Driver Guide

Chapter 7
Required Instrument Driver Functions

This chapter describes the implementation of the required instrument driver functions of a
LabWindows/CVI instrument driver. For each required instrument driver function, the following
information is presented; the C function prototype, a description of the purpose and operation of
the function, a table defining each parameter, all possible completion and error codes, and any
special implementation requirements.

The required instrument driver functions are as follows.

• Initialize

• Close

• Reset

• Self-Test

• Error Query

• Error Message

• Revision Query

For each function, the following information is given.

• Prototype—The C function prototype

• Description—A desription of the purpose and general operation of the function

• Parameters—A table defining each parameter. Information includes the name of each
parameter, the direction (input or output), the data type, and a description

• Return Values—Lists possible completion and error codes. For each a definition is
specified along with a description and who is responsible for setting this code (either the
instrument driver or the VISA I/O library)

• • Implementation Requirements—Any special implementation requirements that should be
considered when creating this function for a particular instrument driver

Required Instrument Driver Functions Chapter 7

LabWindows/CVI Instrument Driver Guide 7-2 © National Instruments Corporation

PREFIX_init

ViStatus status = _VI_FUNC PREFIX_init (ViRsrc rsrcName, ViBoolean id_query,
ViBoolean reset,
ViSession _VI_FAR *vi);

Purpose

The PREFIX_init function is the first function called when you access an instrument driver.
It configures the communications interface and sends a default setup command string to the
instrument. Typically, the default setup configures the instrument's operation for the rest of the
driver (such as turning headers on or off or using long or short form for queries). Upon
successful operation, the initialize function returns a session that is used to address the
instrument in all subsequent instrument driver functions.

The PREFIX_init function has an instrument descriptor string as an input. Based on the
syntax of this input, it configures the I/O interface and generates an instrument session that is
used by all other instrument driver functions. The grammar for the instrument descriptor is
shown below. Optional parameters are shown in square brackets ([]).

Interface Grammar

GPIB GPIB[board]::primary address[::secondary address][::INSTR]

VXI VXI[board]:: VXI logical address[::INSTR]

GPIB-VXI GPIB-VXI[board][::GPIB-VXI primary address]::VXI logical
address[::INSTR]

The GPIB keyword is used with GPIB instruments. The VXI keyword is used for either
embedded or MXIbus controllers. The GPIB-VXI keyword is used for a GPIB-VXI controller.

Additionally, the PREFIX_init function can perform selectable ID query and reset operations.
It is helpful if the ID query and reset operations are user selectable, because a user can disable the
ID query when he or she attempts to use the driver with a similar instrument but does not need to
modify the driver source code. Also, a user can enable or disable the reset operation, and this
action is useful for debugging when resetting would take the instrument out of the state the user
was trying to test.

Chapter 7 Required Instrument Driver Functions

© National Instruments Corporation 7-3 LabWindows/CVI Instrument Driver Guide

Parameters

Input rsrcName ViRsrc Instrument Description
Examples:

VXI::5

GPIB-VXI::128::INSTR

id_query ViBoolean if (VI_TRUE) perform in-system verification
if (VI_FALSE) do not perform in-system
verification

reset ViBoolean if (VI_TRUE) perform reset operation
if (VI_FALSE) do not perform reset operation

Output vi ViSession Unique logical identifier reference to a session

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description Set By

VI_SUCCESS Session opened successfully

VI_WARN_NSUP_ID_QUERY Identification query not supported Driver

VI_WARN_NSUP_RESET Reset operation not supported Driver

Error Codes Description Set By

VI_ERROR_FAIL_ID_QUERY Instrument identification query failed Driver

VI_ERROR_PARAMETER2 id_query parameter out of range Driver

VI_ERROR_PARAMETER3 reset parameter out of range Driver

VI_ERROR_INV_RSRC_NAME Invalid resource specified. Parsing
error

VISA

VI_ERROR_INV_ACC_MODE Invalid access mode VISA

VI_ERROR_RSRC_NFOUND Insufficient location information or
resource not present in the system

VISA

VI_ERROR_ALLOC Insufficient system resources to open
a session

VISA

Required Instrument Driver Functions Chapter 7

LabWindows/CVI Instrument Driver Guide 7-4 © National Instruments Corporation

Implementation Requirements

Verifying the identity can be accomplished by checking the manufacturer ID and model number
in the instrument's VXI register set by using the *IDN query for IEEE 488.2 compatible
instruments, or by other means. If your instrument cannot perform an identification query or be
programmatically reset to a known state, their corresponding parameters must still be provided in
the PREFIX_init function, but they can be ignored.

If the PREFIX_init function encounters an error, the value of the vi output parameter should
be VI_NULL and any valid sessions obtained from viOpen should be closed.

PREFIX_close

ViStatus status = _VI_FUNC PREFIX_close (ViSession vi);

Purpose

All LabWindows/CVI instrument drivers include a Close function that terminates the software
connection to the instrument and deallocates system resources. Additionally, the developer may
select to place the instrument in an idle state. For example, the developer of a switch driver may
disconnect all switches when he or she closes the instrument driver.

Parameter

Input vi ViSession Unique logical identifier to a session with an
instrument

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows

Completion Code Description Set By

VI_SUCCESS Session closed successfully

Error Code Description Set By

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_CLOSING_FAILED Unable to deallocate the previously
allocated data structures
corresponding to this session

VISA

Chapter 7 Required Instrument Driver Functions

© National Instruments Corporation 7-5 LabWindows/CVI Instrument Driver Guide

PREFIX_reset

ViStatus status = _VI_FUNC PREFIX_reset (ViSession vi);

Purpose

The PREFIX_reset function programmatically places the instrument in a known state. In an
IEEE 488.2 instrument, the PREFIX_reset function sends the command string "*RST" to the
instrument. You can either call the PREFIX_reset function separately, or you can select it to
be called from the PREFIX_init function.

Parameter

Input vi ViSession Unique logical identifier to a session with
an instrument

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows

Completion Code Description Set By

VI_SUCCESS Reset successful

VI_WARN_NSUP_RESET Reset operation not supported Driver

Error Code Description Set By

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation
completed

VISA

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol
occurred during transfer

VISA

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the
given vi is not currently the
controller in charge

VISA

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Required Instrument Driver Functions Chapter 7

LabWindows/CVI Instrument Driver Guide 7-6 © National Instruments Corporation

Implementation Requirements

The default state that the Reset function places the instrument in should be documented in the
help information for the Reset function.

PREFIX_self_test
Vistatus status = _VI_FUNC PREFIX_self_test(ViSession vi,

ViInt16 _VI_FAR * test_result,
ViChar _VI_FAR test_message[]);

Purpose

All LabWindows/CVI instrument drivers have a Self-Test function. The PREFIX_self_test
function forces the instrument to perform a self-test. The PREFIX_self_test function waits
for the instrument to complete the test, then queries the instrument for the results of the self-test
and returns the results to the user.

Parameter

Input vi ViSession Unique logical identifier to a session
with an instrument

Output test_result ViInt16 Numeric result from self-test operation
0 = no error (test passed)

test_message ViChar[] Self-test status message

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows

Completion Code Description Set By

VI_SUCCESS Self test successful

VI_WARN_NSUP_SELF_TEST Self-test operation not supported Driver

Chapter 7 Required Instrument Driver Functions

© National Instruments Corporation 7-7 LabWindows/CVI Instrument Driver Guide

Error Code Description Set By

VI_ERROR_INV_RESPONSE Error interpreting instrument
response

Driver

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation
completed

VISA

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol
occurred during transfer

VISA

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol
occurred during transfer

VISA

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the
given vi is not currently the
controller in charge

VISA

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Implementation Requirements

If your instrument cannot perform a self-test operation, you should still include the function in
the driver and return the warning VI_WARN_NSUP_SELF_TEST.

PREFIX_error_query
ViStatus status = _VI_FUNC PREFIX_error_query (ViSession vi,

ViInt32 _VI_FAR * error,
ViChar _VI_FAR error_message[]);

Purpose

All LabWindows/CVI instrument drivers have an Error Query function. This function queries
the instrument and returns the instrument-specific error information.

Parameter

Input vi ViSession Unique logical identifier to a session with
an instrument

Output error ViInt32 Instrument error code

error_message ViChar[] Instrument error message

Required Instrument Driver Functions Chapter 7

LabWindows/CVI Instrument Driver Guide 7-8 © National Instruments Corporation

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows

Completion Code Description Set By

VI_SUCCESS Error query successful

VI_WARN_NSUP_SELF_TEST Self-test operation not supported Driver

Error Code Description Set By

VI_ERROR_INV_RESPONSE Error interpreting instrument
response

Driver

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation
completed

VISA

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol
occurred during transfer

VISA

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol
occurred during transfer

VISA

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the
given vi is not currently the
controller in charge

VISA

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Implementation Requirements

If your instrument cannot perform an error query, you should still include the function in the
driver and return the warning VI_WARN_NSUP_ERROR_QUERY.

Chapter 7 Required Instrument Driver Functions

© National Instruments Corporation 7-9 LabWindows/CVI Instrument Driver Guide

PREFIX_error_message

ViStatus status = _VI_FUNC PREFIX_error_message (ViSession vi,
ViStatus error ,
ViChar _VI_FAR message[]);

Purpose

LabWindows/CVI instrument drivers have an Error Message function. This function translates
the error return value from a LabWindows/CVI instrument driver function to a user-readable
string.

Parameter

Input vi ViSession Unique logical identifier to a session with
an instrument

error ViStatus Instrument driver error code

Output message ViChar[] Instrument driver error message

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description Set By

VI_SUCCESS Error message successful

VI_WARN_UNKNOWN_STATUS The status code passed to the
operation could not be interpreted

Driver

Implementation Requirements

The PREFIX_error_message function should accept a value of VI_NULL for the vi input
parameter. If the value VI_NULL is passed into the function, the vi parameter is ignored;
otherwise the value of the vi parameter may be used by the function. This allows the
PREFIX_error_message function to execute even if the PREFIX_init function fails.

Required Instrument Driver Functions Chapter 7

LabWindows/CVI Instrument Driver Guide 7-10 © National Instruments Corporation

PREFIX_revision

ViStatus status = _VI_FUNC PREFIX_revision (ViSession vi,
ViChar _VI_FAR driver_rev [] ,
ViChar _VI_FAR instr_rev[])

Purpose

All LabWindows/CVI instrument drivers have a Revision function. This function outputs the
following.

• The revision of the instrument driver

• The firmware revision of the instrument being used

Parameter

Input vi ViSession Unique logical identifier to a session with an
instrument

Output driver_rev ViChar[] Instrument driver revision

instr_rev ViChar[] Instrument firmware revision

Return Values

Type ViStatus This is the operational return status. It returns either a
completion code or an error code as follows.

Completion Code Description Set By

VI_SUCCESS Revision query successful

VI_WARN_NSUP_REV_QUERY Revision query not supported Driver

Chapter 7 Required Instrument Driver Functions

© National Instruments Corporation 7-11 LabWindows/CVI Instrument Driver Guide

Error Code Description Set By

VI_ERROR_INV_RESPONSE Error interpreting instrument
response

Driver

VI_ERROR_INV_SESSION The given session is invalid VISA

VI_ERROR_TMO Timeout expired before operation
completed

VISA

VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol
occurred during transfer

VISA

VI_ERROR_RAW_RD_PROT_VIOL Violation of raw read protocol
occurred during transfer

VISA

VI_ERROR_BERR Bus error occurred during transfer VISA

VI_ERROR_NCIC The interface associated with the
given vi is not currently the
controller in charge

VISA

VI_ERROR_NLISTENERS No Listeners condition is detected VISA

Implementation Requirements

If the instrument firmware revision cannot be queried, the Revision function returns the literal
string "Not Available" in the instr_rev output parameter, and the function returns the warning
VI_WARN_NSUP_REV_QUERY.

© National Instruments Corporation 8-1 LabWindows/CVI Instrument Driver Guide

Chapter 8
Instrument Driver Example

This chapter shows you how to create a complete GPIB instrument driver. The example
presented in this chapter can serve as a model for your own instrument driver development.

The steps you will learn in this chapter include

• Modifying the file core_gpb.fp to create the function tree and panels for the new driver.

• Modifying the files core_gpb.c and core_gpb.h to create the instrument program for
the new driver.

• Loading and testing the driver.

Example—Creating a GPIB Instrument Driver

This example illustrates all of the steps for creating a complete GPIB instrument driver. An
overview of the procedure appears in the following list.

• Modify the file core_gpb.fp to create the function tree and panels for the new driver.

• Modify the files core_gpb.c and core_gpb.h to create the instrument program for the
new driver.

• Load and test the instrument driver.

The instrument used in this example is a Tektronix 2430A oscilloscope. For simplicity, only the
following functions are created.

• Initialize

• Configure vertical sensitivity and horizontal timebase

• Read waveform

• Close

In many cases, you do not need to start from the beginning of the procedure as done in this
example. You can frequently modify an existing driver for a similar instrument.

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-2 © National Instruments Corporation

Creating the Function Tree

To create the instrument driver, you first create the function tree using the Function Tree Editor.
To invoke the Function Tree Editor, select the Function Tree (*.fp) option from either the New
or Open commands in the File menu.

Use the file CORE_GPB.FP, located in the INSTR subdirectory, as a template for building your
instrument driver. Load this file using the Open command in the File menu. The screen appears
as shown in Figure 8-1.

Figure 8-1. The Function Tree for CORE_GPB.FP

Modify the instrument name at the top of the function tree as follows.

1. Position the highlight on the statement (Instrument Model Name) .

2. Select Edit Node from the Edit menu.

3. Complete the Edit Instrument Node dialog box as follows: Type Tektronix 2430A
Oscilloscope in the Name box, and tek2430a in the Prefix box.

4. Select OK .

5. With the highlight still on the instrument name, select Edit Help from the Edit menu, or
click on the name with the right mouse button.

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-3 LabWindows/CVI Instrument Driver Guide

6. To modify the help information:

a. Change the phrase (Instrument Name) to Tektronix 2430A
Oscilloscope .

b. Insert the following text between the Initialize and Utility Functions descriptions.

2. Configure - Set the volts per division and timebase of
 the oscilloscope

3. Read waveform - Read a waveform from the oscilloscope

c. Give Utility Functions the number 4 and Close the number 5.

7. Select Save .FP File As from the File menu and save the file as TEK2430A.FP .

Add two new functions to the function tree as follows.

1. Position the highlight on Initialize .

2. Select Function Panel Window from the Create menu.

3. Complete the Create Function Panel Window Node dialog box as follows.

Type Configure in the Name box and config in the Function box.

4. Select OK .

5. Select Function Panel Window from the Create menu.

6. Complete the Create Function Panel Window Node dialog box as follows.

Type Read Waveform in the Name box and read_waveform in the Function Name
box.

7. Select OK .

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-4 © National Instruments Corporation

The function tree should now look like the one in Figure 8-2.

Figure 8-2. The New Function Tree for the Tektronix 2430A Instrument Driver

Select Save .FP File from the File menu.

Creating the Configure Function Panel Window

Add help information to the Configure function panel as follows.

1. Position the highlight on Configure and select Edit Function Panel Window from the
Edit menu.

2. Select Function Help from the Edit menu.

3. Type the following help text.

Configures the vertical volts per division and horizontal timebase of the
oscilloscope.

The Configure function configures the scope so that only the channel
specified by the Channel control is displayed, i.e. the vertical mode is
either channel 1 only or channel 2 only.

4. Select Save .FP File and then select Close from the File menu of the Help Editor dialog box.

Add an Instrument Handle control to specify which instrument to talk to as follows.

1. Press <Ctrl-Page Down> twice to display the Reset function panel.

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-5 LabWindows/CVI Instrument Driver Guide

2. Position the highlight on the Instrument Handle control.

3. Select Copy Controls from the Edit menu.

4. Press <Ctrl-Page Up> twice to display the Configure function panel.

5. Select Paste from the Edit menu to place a copy of the Instrument Handle control on the
Configure panel.

6. Position the Instrument Handle control in the lower left corner of the panel.

7. Select Save .FP File from the File menu.

Add a control for specifying the channel to configure as follows.

1. Select Binary from the Create menu.

2. Complete the Edit Binary Control and Edit On/Off Settings dialog boxes as shown in
Figures 8-3 and 8-4.

Figure 8-3. The Edit Binary Control Dialog Box

Figure 8-4. The Channel Edit On/Off Settings Dialog Box

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-6 © National Instruments Corporation

3. Select OK twice.

4. Position the Channel control in the upper left portion of the panel.

Add help to the Channel control as follows.

1. Highlight the Channel control and select Control Help from the Edit menu.

2. Enter the following text in the Edit Help dialog box.

Specifies the channel to that Volts/Div and Coupling apply. Channel also
indicates the mode in that to place the scope – channel 1 only or channel 2
only.

Valid Range: 1 - Channel 1
2 - Channel 2

3. Select Save .FP File and then select Close from the File menu.

Add a control for specifying the vertical volts-per-division as follows.

1. Select Ring from the Create menu.

2. Complete the Edit Ring Control dialog box as shown in Figure 8-5.

Figure 8-5. The Edit Ring Control Dialog Box for the Volts/Div Ring Control

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-7 LabWindows/CVI Instrument Driver Guide

3. Press the Label/Value Pairs button.

4. Complete the Edit Label/Value Pairs dialog box as shown in Figure 8-6.

Figure 8-6. The Volts/Div Ring Control Edit Label/Value Pairs Dialog Box

5. Select OK twice.

6. Position the Volts/Div control in the upper middle portion of the panel.

Add help to the Volts/Div control as follows.

1. Highlight the Volts/Div control and select Control Help from the Edit menu.

2. Enter the following text in the Help Editor dialog box.

Specifies the volts/division setting of the channel specified by the
Channel control.

Valid Range: 100 mV to 50 V

3. Select Save .FP File and then select Close from the File menu.

Add a control for specifying the horizontal timebase as follows.

1. Select Ring from the Create menu.

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-8 © National Instruments Corporation

2. Complete the Edit Ring Control dialog box as shown in Figure 8-7.

Figure 8-7. The Edit Ring Control Dialog Box

3. Press the Label/Value Pairs button.

4. Complete the Edit Label/Value Pairs dialog box as shown in Figure 8-8.

Figure 8-8. The Edit Label/Value Pairs Dialog Box

Note: Figure 8-7 shows an abbreviated listing of the possible timebase settings of the 2430A.
You can specify other values when operating the panel by selecting Toggle Control
Style and entering the desired value.

5. Select OK twice.

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-9 LabWindows/CVI Instrument Driver Guide

6. Position the Sec/Div control in the upper right portion of the panel.

Add help to the Sec/Div control as follows.

1. Highlight the Sec/Div control and select Control Help from the Edit menu.

2. Enter the following text in the Help Editor dialog box.

Specifies the seconds/division setting for the main (A) timebase of the
oscilloscope

Valid Range: 10 nS to 5 S

3. Select Save .FP File and then select Close from the File menu.

Add a return control to indicate errors as follows.

1. Press <Ctrl-Page Up> to display the Initialize function panel.

2. Position the highlight on the Error control.

3. Select Copy Controls from the Edit menu.

4. Press <Ctrl-Page Down> to display the Configure function panel.

5. Select Paste from the Edit menu to place a copy of the Error control on the Configure panel.

6. Position the Error control in the lower right corner of the panel.

Add help to the Error control as follows.

1. Select Control Help from the Edit menu.

2. Modify the text in the Help Editor dialog box so that it appears as follows.

Reports the status of the function call.

Status Codes:
Status Description
--
VI_SUCCESS No error (the call was successful).
VI_ERROR_PARAMETER2 IDQuery parameter out of range.
VI_ERROR_PARAMETER3 reset parameter out of range.
VI_ERROR_INV_SESSION The session is invalid.
VI_ERROR_TMO Timeout expired.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol.
VI_ERROR_BERR Bus error occurred.
VI_ERROR_NCIC Not the controller in charge.
VI_ERROR_NLISTENERS No Listeners.

3. Select Save .FP File and then select Close from the File menu.

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-10 © National Instruments Corporation

The Configure function panel window should now appear as shown in Figure 8-9.

Figure 8-9. The Complete Configure Function Panel Window

Select Save .FP File from the File menu and save the function panels using the default filename,
tek2430a.fp .

Creating the Read Waveform Function Panel

Press <Ctrl-Page Down> to move to the Read Waveform function panel.

Add help information to the panel as follows.

1. Select Panel Help from the Edit menu.

2. Enter the following help text.

Reads a waveform from the current acquisition channel of the 2430A.

Also returns the sampling period and trigger offset.

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-11 LabWindows/CVI Instrument Driver Guide

3. Select Save .FP File and then select Close from the File menu of the Help Editor dialog box.

Add an Instrument Handle control to specify which instrument to talk to as follows.

1. Press <Ctrl-Page Down> to display the Reset function panel.

2. Position the highlight on the Instrument Handle control.

3. Select Copy Controls from the Edit menu.

4. Press <Ctrl-Page Up> to display the Read Waveform function panel.

5. Select Paste from the Edit menu to place a copy of the Instrument Handle control on the
Read Waveform panel.

6. Position the Instrument Handle control in the lower left corner of the panel.

7. Select Save .FP File from the File menu.

Add a control for specifying the waveform array as follows.

1. Select Output from the Create menu.

2. Complete the Create Output Control dialog box as shown in Figure 8-10.

Figure 8-10. The Waveform Array Create Output Control Dialog Box

3. Press OK .

4. Position the Waveform Array control in the upper left portion of the panel.

Add help to the Waveform Array control as follows.

1. Highlight the Waveform Array control and select Control Help from the Edit menu.

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-12 © National Instruments Corporation

2. Enter the following text in the Help Editor dialog box.

Specifies the name of the array in which to store the waveform values.
The dimension of the array must be greater than or equal to 1024 elements.

3. Select Save .FP File and then select Close from the File menu.

Add a control for displaying the sample period as follows.

1. Select Output from the Create menu.

2. Complete the Create Output Control dialog box as shown in Figure 8-11.

Figure 8-11. The Sample Period Create Output Control Dialog Box

3. Press OK .

4. Position the Sample Period control in the upper middle portion of the panel.

Add help to the Sample Period control as follows.

1. Highlight the Sample Period control and select Control Help from the Edit menu.

2. Enter the following text in the Help Editor dialog box.

Displays the sample rate in seconds at which the waveform was captured.

3. Select Save .FP File and then select Close from the File menu.

Add a control for displaying the trigger offset as follows.

1. Select Output from the Create menu.

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-13 LabWindows/CVI Instrument Driver Guide

2. Complete the Create Output Control dialog box as shown in Figure 8-12.

Figure 8-12. The Trigger Offset Create Output Control Dialog Box

3. Press OK .

4. Position the Trigger Offset control in the upper right portion of the panel.

Add help to the Trigger Offset control as follows.

1. Select Control Help from the Edit menu.

2. Type the following text in the Help Editor dialog box.

Displays the trigger offset of the waveform in seconds.

3. Select Save .FP File and then select Close from the File menu.

Add a return control to indicate errors as follows.

1. Press <Ctrl-Page Up> to display the Configure function panel.

2. Position the highlight on the Error control.

3. Select Copy Controls from the Edit menu.

4. Press <Ctrl-Page Down> to display the Read Waveform function panel.

5. Select Paste from the Edit menu to place a copy of the Error control on the Read Waveform
panel.

6. Position the Error control in the lower right corner of the panel.

Add help to the Error control as follows.

1. Highlight the Error control and select Control Help from the Edit menu.

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-14 © National Instruments Corporation

2. Modify the text in the Help Editor dialog box so that it appears as follows.

Reports the status of the function call.

Status Codes:
Status Description
--
VI_SUCCESS No error (the call was successful).
VI_ERROR_INV_SESSION The session is invalid.
VI_ERROR_TMO Timeout expired.
VI_ERROR_RAW_WR_PROT_VIOL Violation of raw write protocol.
VI_ERROR_BERR Bus error occurred.
VI_ERROR_NCIC Not the controller in charge.
VI_ERROR_NLISTENERS No Listeners.

3. Select Save .FP File and then select Close from the File menu.

The Read Waveform function panel should now appear as shown in Figure 8-13.

Figure 8-13. The Complete Read Waveform Function Panel Window

The function panels are now complete. Select Save .FP File from the File menu. Save the
function panels again using the filename, tek2430a.fp .

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-15 LabWindows/CVI Instrument Driver Guide

Creating the Instrument Program

You are now ready to create the instrument program for the instrument driver. Create the
program in three stages.

• Modify the device-dependent items in the file core_gpb.c .

• Modify the device-dependent items and add new declarations to the include file
core_gpb.h .

• Add new functions to the file core_gpb.c .

Modifying CORE_GPB.C Source File

As discussed in Chapter 6, Programming Guidelines for Instrument Drivers, the file core_gpb
contains the source code for some core functions for a GPIB instrument driver. Load this file
into a source window.

The comments at the beginning of the file list the device-dependent items you must change.
Make the following changes to the file.

1. Select Replace from the Edit menu and perform a global change with the Case Sensitive
option selected as follows:

Type PREFIX in the Find What box and type tek2430a in the Replace With box.

2. The comment CHANGE marks the locations of device-dependent items you must change.
Select Find from the Edit menu and search for the word CHANGE with the Case Sensitive
option selected. In Steps 2-6, delete the change comments when you have completed that
step.

The second occurrence of the word CHANGE appears at the location where you insert the
Instrument Driver information. Insert the following information.

• The instrument model name

• The original release date

• The name or names of the person or people who wrote or modified the instrument driver

3. Find the next occurrence of the word CHANGE. You must now specify the default setup
string, if any, that is sent to the instrument every time the initialize function is called. Modify
the code as follows:

• Change the string DEFAULT_STRING to PATH OFF

• Change the variable DEFAULT_STRING_LENGTH to 8

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-16 © National Instruments Corporation

4. Find the next occurrence of the word CHANGE. The following code performs an ID query.
Modify the code as follows:

Change if ((tek2430a_status = viWrite (*instrSession,
"*IDN?", 5,&retCnt)) < 0)

To if ((tek2430a_status = viWrite (*instrSession,
"ID?", 3, &retCnt))< 0)

5. Find the next occurrence of the word CHANGE. You must now modify the parsing of the ID
query to reflect the response of the instrument. Read the comments explaining the actions
taking place in the ID query. The Tektronix 2430A responds with the string TEK/2430A .
Modify the code as follows:

• Change the string ID_RESPONSE to TEK/2430A

• Change the variable ID_RESPONSE_LENGTH to 9

6. Find the next occurrence of the word CHANGE. You must now specify the optional reset
string, if any, to be sent to the instrument. The command INIT resets the Tektronix 2430A to
a known state. Modify the code as follows:

• Change the string INIT_STRING to INIT

• Change the variable INIT_STRING_LENGTH to 4

7. Select Save .FP File As from the File menu and save the modified file in a new file called
tek2430a.c .

Modifying the CORE_GPB.H Include File

The instrument program you are creating uses an include file. You must modify the include file
CORE_GPB.H as you did the instrument program.

Create the include file for the new driver as follows.

1. Load the include file core_gpb.h .

2. Change the phrase <Instrument Model Name> to Tektronix 2430A
Oscilloscope .

3. Select Change from the Edit menu and perform a global change as follows:

Type PREFIX in the Find What box and type tek2430a in the Change To box.

4. Add the declarations for the new functions you will write.

ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, ViInt32 chan,
 ViReal64 v_div, ViReal64 sec_div);

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-17 LabWindows/CVI Instrument Driver Guide

ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,
 ViReal64 _VI_FAR *wvfm,
 ViReal64 _VI_FAR *xin,
 double *trig_off);

5. Select Save .FP File As from the File menu and save the modified file in an include file
named tek2430a.h .

Writing the New Functions

You are now ready to add the new functions to the instrument driver. Before doing this, compile
the program. To compile the instrument driver, create a project for it by selecting Project (*.prj)
from the New option in the File menu. Add the files TEK2430A.C , TEK2430A.H , and
TEK2430A.FP to the project by selecting Add Files To Project from the Edit menu. Then
highlight TEK2430A.C and select Compile Project from the Build menu. If any errors occur,
compare the source and include files to the listings in the previous section. Correct any mistakes
that you find.

Move the cursor to the line after the end of the function tek2430a_init .

Writing the Configure Function

This function sets the volts per division of the specified channel and the horizontal timebase of
the oscilloscope. The function performs the following operations.

• Check parameters for valid values.

• Format command strings as follows.

– v_mode_string specifies the Vertical Display mode.

if chan = 1 the mode is "CH1:ON,CH2:OFF"

if chan = 2 the mode is "CH1:OFF,CH2:ON"

– CH%d specifies the channel.

– VOL:%f[ep3] specifies the volts per division.

– HOR MOD:ASW,ASE:%f[ep3] specifies the seconds per division.

– ATR MOD:AUTO sets the trigger mode to AUTO.

– VMO DISP:YT,%s specifies the vertical display.

– DAT SOU:CH%d specifies the source of the acquired data.

• Write the command string to the oscilloscope.

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-18 © National Instruments Corporation

Enter the following code for the Configure function.

/*===*/
/* Function: Configure */
/* Purpose: This function configures the vertical sensitivity, timebase, */
/* and trigger mode. */
/*===*/

ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, ViInt32 chan,
 ViReal64 v_div, ViReal64 sec_div)

{

static ViString v_mode_string[] = {"CH1:ON,CH2:OFF", "CH1:OFF,CH2:ON"};
 ViUInt32 retCnt;

ViStatus tek2430a_status = VI_SUCCESS;

if (tek2430a_invalidViInt32Range (chan, 1, 2))
return VI_ERROR_PARAMETER2;

if (tek2430a_invalidViReal64Range (v_div, 0.1, 5.0))
return VI_ERROR_PARAMETER3;

if (tek2430a_invalidViReal64Range (sec_div, 5.0e-9, 5.0))
return VI_ERROR_PARAMETER4;

tek2430a_status = viPrintf (instrSession, "%s<CH%d VOL:%f[p3];HOR
MOD:ASW,ASE:%f[ep3];ATE MOD:AUTO;VMO DISP:YT,%s;DAT SOU:CH%d",

chan, v_div, sec_div, v_mode_string[chan-1], chan);
return tek2430a_status;

}

Writing the Read Waveform Function

This function performs the following operations.

• Build command strings as follows.

– DAT END:RPB specifies the data format.

– PATH OFF specifies the format of the response to queries.

– WFM? XIN queries for the sample rate (x increment).

– WFM? YMU queries for the y multiplier.

– WFM? YOF queries for the y offset.

– WFM? PT.O queries for the point offset.

• Read the response to the queries, and parse out the x increment, y multiplier, y offset, and
point offset.

• Query the waveform for PATH ON;CURV?

Chapter 8 Instrument Driver Example

© National Instruments Corporation 8-19 LabWindows/CVI Instrument Driver Guide

• Read the header and the 1,024 one-byte integer data points into the array in.data or
in_data . The integers are packed low-byte/high-byte in the array.

• Place the three-byte header in the array header using the Scan function. The function
converts the packed one-byte integers to floating-point values and places them in the array
wvfm.

• Use the Analysis Library function LinEv1D to scale the data in wvfm using the y offset
and y multiplier values.

Enter the following code for the Read Waveform function after the Configure function.

/*===*/
/* Function: Read Waveform */
/* Purpose: This function reads a waveform and returns x increment, and */
/* trigger offset. */
/*===*/
ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,

ViReal64 _VI_FAR *wvfm,
ViReal64 _VI_FAR *xin,
double *trig_off)

{
 ViUInt32 retCnt;

ViStatus tek2430a_status = VI_SUCCESS;
ViReal64 ymu, yof;
ViChar header[2];

if ((tek2430a_status = viWrite (instrSession,
 "DAT ENCD:RPB;PATH OFF;WVM? XIN;WFM? YMU;WVM? YOF;WFM? PT.0",
 58,&retCnt)) < 0)
return tek2430a_status;

if ((tek2430a_status = viScanf (instrSession, "%f;%f;%f;%f",
 xin, &ymu, &yof, trig_off)) < 0)

return tek2430a_status;
if ((tek2430a_status = viWrite (instrSession, "CURV?", 5, &retCnt)) < 0)

return tek2430a_status;
if ((tek2430a_status = viRead (instrSession, in_data, 1027,

 &retCnt)) < 0)
return tek2430a_status;

yof = -ymu * (yof + 128.0);
if (Scan (in_data, "%1027i[b1u]>%3i[b1]%1024f", header, wvfm) != 2)

return VI_ERROR_INV_RESPONSE;

LinEv1D (wvfm, 1024, ymu, yof, wvfm);

return tek2430a_status;
}

Instrument Driver Example Chapter 8

LabWindows/CVI Instrument Driver Guide 8-20 © National Instruments Corporation

Adding New Include Statements and Variable Declarations

Before compiling the program, you must add several statements at the top of the program to
include a file and declare variables. Move to the top of the Program window.

The Read Waveform function scales the waveform data using an Analysis Library routine
LinEv1D . You must, therefore, add an include statement for the Analysis Library include file.
The include statement you should insert appears here in bold type in the following C language
code excerpt.

#include <visa.h>
#include <formatio.h>
#include <string.h>
#include <analysis.h>
#include "tk2430.h"

The Read Waveform function reads binary data into a char array. You must set a dimension for
this array. Add the following declaration and comment beneath the declaration of cmd.

/* in_data is a buffer for binary data from the scope */
static char tek2430a_in_data[514];

Compile the program to verify that you entered the code correctly. Correct any syntax errors you
find. Save the completed program in the file tek2430a .

Testing the Driver

If you have a Tektronix 2430A oscilloscope, you should now test the instrument driver using the
function panels. You should always develop and test the instrument program in source code
form, as described in Chapter 6, Programming Guidelines for Instrument Drivers.

© National Instruments Corporation A-1 LabWindows/CVI Instrument Driver Guide

Appendix A
Tektronix 2430A Instrument Driver
Code Sample

This appendix contains instrument driver code samples for the Tektronix 2430A.

Tektronix 2430A Instrument Driver Header File
/*== Tektronix 2430A Oscilloscope Include File ============================*/

#ifndef __PREFIX_HEADER
#define __PREFIX_HEADER

#include <vpptype.h>

/*= GLOBAL FUNCTION DECLARATIONS ==*/

#if defined(__cplusplus) || defined(__cplusplus__)
extern "C" {
#endif

ViStatus _VI_FUNC tek2430a_init (ViRsrc resourceName, ViBoolean IDQuery,
 ViBoolean reset, ViPSession instrSession);

ViStatus _VI_FUNC tek2430a_close (ViSession instrSession);
ViStatus _VI_FUNC tek2430a_reset (ViSession instrSession);
ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, ViInt32 chan,

 ViReal64 v_div, ViReal64 sec_div);
ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession,

ViReal64 _VI_FAR *wvfm,
ViReal64 _VI_FAR *xin,
ViReal64 _VI_FAR *trig_off);

ViStatus _VI_FUNC PREFIX_self_test (ViSession instrSession,
ViPInt16 testResult,
ViChar _VI_FAR testMessage[]);

ViStatus _VI_FUNC PREFIX_error_query (ViSession instrSession,
 ViPInt32 errCode,
 ViChar _VI_FAR errMessage[]);

ViStatus _VI_FUNC PREFIX_error_message (ViSession instrSession,
 ViStatus error,
 ViChar _VI_FAR message[]);

ViStatus _VI_FUNC PREFIX_revision_query (ViSession instrSession,
 ViChar _VI_FAR driverRev[],
 ViChar _VI_FAR instrRev[]);

#if defined(__cplusplus) || defined(__cplusplus__)
}
#endif

#endif
/*=== END INCLUDE FILE ==*/

Tektronix 2430A Instrument Driver Code Sample Appendix A

LabWindows/CVI Instrument Driver Guide A-2 © National Instruments Corporation

Tektronix 2430A Instrument Driver Source File
#include <visa.h>
#include <formatio.h>
#include <string.h>
#include <analysis.h>
#include "tk2430.h"

#define tek2430a_REVISION "A1.0" /* Instrument driver revision */

/*= Instrument Model Name ===*/
/* LabWindows Instrument Driver */
/* Original Release: November, 1993 */
/* By: Bill Pitts */
/* Modification History: None */
/*===*/

/*= INTERNAL DATA ===*/
static char in_data[1027];

/*= UTILITY ROUTINES ==*/
ViBoolean tek2430a_invalidViBooleanRange (ViBoolean val);
ViBoolean tek2430a_invalidViInt32Range (ViInt32 val, ViInt32 min,

 ViInt32max);
ViBoolean tek2430a_invalidViReal64Range (ViReal64 val, ViReal64 min, ViReal64

 max);
ViStatus tek2430a_initCleanUp (ViSession openRMSession,
 ViSession *openInstrSession, ViStatus

 currentStatus);

/*===*/
/* Function: Initialize */
/* Purpose: This function opens the instrument, queries the instrument */
/* for its ID, and initializes the instrument to a known state. */
/*===*/
ViStatus _VI_FUNC tek2430a_init (ViRsrc resourceName, ViBoolean IDQuery,

 ViBoolean reset, ViPSession instrSession)
{

ViStatus tek2430a_status = VI_SUCCESS;
ViSession rmSession = 0;
ViUInt32 retCnt = 0;

/*- Check input parameter ranges ------------------------------------*/

if (tek2430a_invalidViBooleanRange (IDQuery))
 return VI_ERROR_PARAMETER2;
if (tek2430a_invalidViBooleanRange (reset))

 return VI_ERROR_PARAMETER3;

Appendix A Tektronix 2430A Instrument Driver Code Sample

© National Instruments Corporation A-3 LabWindows/CVI Instrument Driver Guide

/*- Open instrument session ---*/

if ((tek2430a_status = viOpenDefaultRM (&rmSession)) < 0)
return tek2430a_status;

if ((tek2430a_status = viOpen (rmSession, resourceName, VI_NULL,
 VI_NULL, instrSession)) < 0) {

viClose (rmSession);
return tek2430a_status;

}

/*- Configure VISA Formatted I/O -----------------------------------*/

if ((tek2430a_status = viSetAttribute (*instrSession,
 VI_ATTR_TMO_VALUE, 10000)) < 0)

 return tek2430a_initCleanUp (rmSession, instrSession,
 tek2430a_status);

if ((tek2430a_status = viSetBuf (*instrSession,
 VI_READ_BUF|VI_WRITE_BUF, 4000)) < 0)

 return tek2430a_initCleanUp (rmSession, instrSession,
 tek2430a_status);

if ((tek2430a_status = viSetAttribute (*instrSession,
 VI_ATTR_WR_BUF_OPER_MODE,
 VI_FLUSH_ON_ACCESS)) < 0)

 return tek2430a_initCleanUp (rmSession, instrSession,
 tek2430a_status);

if ((tek2430a_status = viSetAttribute (*instrSession,
 VI_ATTR_RD_BUF_OPER_MODE,
 VI_FLUSH_ON_ACCESS)) < 0)

 return tek2430a_initCleanUp (rmSession, instrSession,
 tek2430a_status);

/*- Identification Query ---*/

if (IDQuery) {
 if ((tek2430a_status = viWrite (*instrSession, "ID?", 3,

 &retCnt)) < 0)
 return tek2430a_initCleanUp (rmSession, instrSession,

 tek2430a_status);

 if ((tek2430a_status = viScanf (*instrSession,
 "TEK/2430A%*[\n]")) < 0)

 return tek2430a_initCleanUp (rmSession, instrSession,
 VI_ERROR_FAIL_ID_QUERY);

 }

/*- Reset instrument --*/

if (reset)
 if ((tek2430a_status = tek2430a_reset (*instrSession)) < 0)
 return tek2430a_initCleanUp (rmSession, instrSession,

 tek2430a_status);

Tektronix 2430A Instrument Driver Code Sample Appendix A

LabWindows/CVI Instrument Driver Guide A-4 © National Instruments Corporation

/*- Send Default Instrument Setup ---------------------------------*/

if ((tek2430a_status = viWrite (*instrSession, "PATH OFF", 8,
 &retCnt)) < 0)

 return tek2430a_initCleanUp (rmSession, instrSession,
 tek2430a_status);

return tek2430a_status;
}

/*===*/
/* Function: Reset */
/* Purpose: This function resets the instrument. If the reset function */
/* is not supported by the instrument, this function returns */
/* the warning VI_WARN_NSUP_RESET. */
/*===*/
ViStatus _VI_FUNC tek2430a_reset (ViSession instrSession)
{

ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;

/* Initialize the instrument to a known state. */

if ((tek2430a_status = viWrite (instrSession, "INIT", 4, &retCnt)) < 0)
 return tek2430a_status;

return tek2430a_status;
}

/*===*/
/* Function: Configure */
/* Purpose: This function configures the vertical sensitivity, timebase, */
/* and trigger mode. */
/*===*/
ViStatus _VI_FUNC tek2430a_config (ViSession instrSession, ViInt32 chan,

 ViReal64 v_div, ViReal64 sec_div)
{

static ViString v_mode_string[] = {"CH1:ON,CH2:OFF", "CH1:OFF,CH2:ON"};
ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;

if (tek2430a_invalidViInt32Range (chan, 1, 2))
return VI_ERROR_PARAMETER2;

if (tek2430a_invalidViReal64Range (v_div, 0.1, 5.0))
return VI_ERROR_PARAMETER3;

if (tek2430a_invalidViReal64Range (sec_div, 5.0e-9, 5.0))
return VI_ERROR_PARAMETER4;

tek2430a_status = viPrintf (instrSession, "%s<CH%d VOL:%f[p3];HOR
MOD:ASW,ASE:%f[ep3];ATE MOD:AUTO;VMO DISP:YT,%s;DAT SOU:CH%d",

chan, v_div, sec_div, v_mode_string[chan-1], chan);

return tek2430a_status;
}

Appendix A Tektronix 2430A Instrument Driver Code Sample

© National Instruments Corporation A-5 LabWindows/CVI Instrument Driver Guide

/*===*/
/* Function: Read Waveform */
/* Purpose: This function reads a waveform and returns x increment, and */
/* trigger offset. */
/*===*/
ViStatus _VI_FUNC tek2430a_read_waveform (ViSession instrSession, ViReal64
_VI_FAR *wvfm, ViReal64 _VI_FAR *xin, ViReal64 _VI_FAR *trig_off)

{
ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;
ViReal64 ymu, yof;
ViChar header[2];

if ((tek2430a_status = viWrite (instrSession,
 "DAT ENCD:RPB;PATH OFF;WVM? XIN;WFM? YMU;WVM? YOF;WFM? PT.0",
 58, &retCnt)) < 0)
return tek2430a_status;

if ((tek2430a_status = viScanf (instrSession, "%f;%f;%f;%f",
 xin, &ymu, &yof, trig_off)) < 0)

return tek2430a_status;

if ((tek2430a_status = viWrite (instrSession, "CURV?", 5,
 &retCnt)) < 0)

return tek2430a_status;

if ((tek2430a_status = viRead (instrSession, in_data, 1027,
 &retCnt)) < 0)

return tek2430a_status;

yof = -ymu * (yof + 128.0);
if (Scan (in_data, "%1027i[b1u]>%3i[b1]%1024f", header, wvfm) != 2)

return VI_ERROR_INV_RESPONSE;
LinEv1D (wvfm, 1024, ymu, yof, wvfm);
return tek2430a_status;

}
/*===*/
/* Function: Self-Test */
/* Purpose: This function executes the instrument self-test and returns */
/* the result. */
/*===*/
ViStatus _VI_FUNC tek2430a_self_test (ViSession instrSession, ViPInt16
testResult, ViChar _VI_FAR testMessage[])
{

ViUInt32 retCnt;
ViStatus tek2430a_status = VI_SUCCESS;

if ((tek2430a_status = viWrite (instrSession, "TESTT SELFD;EXE;ERR?",
 20, &retCnt)) < 0)

 return tek2430a_status;

Tektronix 2430A Instrument Driver Code Sample Appendix A

LabWindows/CVI Instrument Driver Guide A-6 © National Instruments Corporation

 if ((tek2430a_status = viScanf (instrSession, "%d%[^\"]",
testResult, testMessage)) < 0)

 return tek2430a_status;

 return tek2430a_status;
}

/*===*/
/* Function: Error Query */
/* Purpose: This function queries the instrument error queue. */
/*===*/
ViStatus _VI_FUNC tek2430a_error_query (ViSession instrSession, ViPInt32
errCode, ViChar _VI_FAR errMessage[])
{
 return VI_WARN_NSUP_ERROR_QUERY;
}

/*===*/
/* Function: Error Message */
/* Purpose: This function Translates the error return value from the */
/* instrument driver into a user-readable string. */
/*===*/
ViStatus _VI_FUNC tek2430a_error_message (ViSession instrSession, ViStatus
errorCode, ViChar _VI_FAR errMessage[])
{

ViStatus tek2430a_status = VI_SUCCESS;

tek2430a_status = viStatusDesc (instrSession, errorCode, errMessage);
if (tek2430a_status = VI_WARN_UNKNOWN_STATUS) {

switch (errorCode) {
case VI_WARN_NSUP_ERROR_QUERY:

errMessage = "WARNING: Error Query not supported";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_PARAMETER2:
errMessage = "ERROR: Parameter 2 out of range";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_PARAMETER3:
errMessage = "ERROR: Parameter 3 out of range";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_FAIL_ID_QUERY:
errMessage = "ERROR: Identification query failed";
tek2430a_status = VI_SUCCESS;
break;

case VI_ERROR_INV_RESPONSE:
errMessage = "ERROR: Interpreting instrument response";
tek2430a_status = VI_SUCCESS;
break;

Appendix A Tektronix 2430A Instrument Driver Code Sample

© National Instruments Corporation A-7 LabWindows/CVI Instrument Driver Guide

default:
errMessage = "Unknown Error";
tek2430a_status = VI_WARN_UNKNOWN_STATUS;
break;

}
}

 return tek2430a_status;
}

/*===*/
/* Function: Revision */
/* Purpose: This function returns the driver and instrument revisions. */
/*===*/
ViStatus _VI_FUNC tek2430a_revision_query (ViSession instrSession, ViChar

 _VI_FAR driverRev[], ViChar _VI_FAR
 instrRev[])

{
ViUInt32 retCnt = 0;
ViUInt16 i = 0;
ViStatus tek2430a_status = VI_SUCCESS;

strcpy (driverRev, tek2430a_REVISION);

if ((tek2430a_status = viWrite (instrSession, "ID?", 3, &retCnt)) < 0)
 return tek2430a_status;

if ((tek2430a_status = viScanf (instrSession, "%*[^,],%[^\n]",
 instrRev)) < 0)

 return tek2430a_status;

return tek2430a_status;
}

/*===*/
/* Function: Close */
/* Purpose: This function closes the instrument. */
/*===*/
ViStatus _VI_FUNC tek2430a_close (ViSession instrSession)
{

ViSession rmSession;
ViStatus tek2430a_status = VI_SUCCESS;

if ((tek2430a_status = viGetAttribute (instrSession,
 VI_ATTR_RM_SESSION,
 &rmSession)) < 0)

 return tek2430a_status;

tek2430a_status = viClose (instrSession);
viClose (rmSession);

return tek2430a_status;
}

Tektronix 2430A Instrument Driver Code Sample Appendix A

LabWindows/CVI Instrument Driver Guide A-8 © National Instruments Corporation

/*= UTILITY ROUTINES ==*/

/*===*/
/* Function: Invalid Boolean Range */
/* Purpose: This function checks a boolian to see if it lies between a */
/* minimum and maximum value. If the value is out of range, set */
/* the return value to VI_FALSE. If the value is OK, set the */
/* return value to VI_TRUE. */
/*===*/
ViBoolean tek2430a_invalidViBooleanRange (ViBoolean val)
{
 return (val < VI_FALSE || val > VI_TRUE);
}

/*===*/
/* Function: Invalid Long Integer Range */
/* Purpose: This function checks a long integer to see if it lies between */
/* a minimum and maximum value. If the value is out of range, */
/* set the global error variable to the value err_code. If the */
/* value is OK, error = 0. The return value is equal to the */
/* global error value. */
/*===*/
ViBoolean tek2430a_invalidViInt32Range (ViInt32 val, ViInt32 min,

 ViInt32 max)
{
 return (val < min || val > max);
}

/*===*/
/* Function: Invalid Real Range */
/* Purpose: This function checks a real number to see if it lies between */
/* a minimum and maximum value. If the value is out of range, */
/* set the global error variable to the value err_code. If the */
/* value is OK, error = 0. The return value is equal to the */
/* global error value. */
/*===*/
ViBoolean tek2430a_invalidViReal64Range (ViReal64 val, ViReal64 min,

 ViReal64 max)
{
 return (val < min || val > max);
}

/*===*/
/* Function: Initialize Clean Up */
/* Purpose: This function is used only by the tek2430a_init function. */
/* When an error is detected this function is called to close */
/* the open resource manager and instrument object sessions and */
/* to set the instrSession that is returned from tek2430a_init */
/* to VI_NULL. */
/*===*/

Appendix A Tektronix 2430A Instrument Driver Code Sample

© National Instruments Corporation A-9 LabWindows/CVI Instrument Driver Guide

ViStatus tek2430a_initCleanUp (ViSession openRMSession, ViSession
 *openInstrSession, ViStatus currentStatus)

{
viClose (*openInstrSession);
viClose (openRMSession);
*openInstrSession = VI_NULL;
return currentStatus;

}

/*=== THE END ===*/

© National Instruments Corporation B-1 LabWindows/CVI Instrument Driver Guide

Appendix B
Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

• United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

• United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

• France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support
FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following number: (512) 418-1111.

Customer Communication Appendix B

LabWindows/CVI Instrument Driver Guide B-2 © National Instruments Corporation

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and
use your Internet address, such as joesmith@anywhere.com , as your password. The
support files and documents are located in the /support directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
Lookout: lookout.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support
National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use the completed
copy of this form as a reference for your current configuration. Completing this form accurately before contacting
National Instruments for technical support helps our applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name ___

Company __

Address ___

__

Fax () Phone ()

Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Clock Speed MHz RAM MB Display adapter

Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision __

Interrupt Level of Hardware ___

DMA Channels of Hardware __

Base I/O Address of Hardware ___

NI-DAQ, LabVIEW, or
LabWindows Version __

Other Products

Computer Make and Model ___

Microprocessor ___

Clock Frequency __

Type of Video Board Installed ___

Operating System ___

Operating System Version __

Operating System Mode __

Programming Language __

Programming Language Version ___

Other Boards in System __

Base I/O Address of Other Boards __

DMA Channels of Other Boards ___

Interrupt Level of Other Boards __

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI Instrument Driver Developers Guide

Edition Date: July 1996

Part Number: 320684C-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

__

Thank you for your help.

Name ___

Title __

Company __

Address ___

__

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 LabWindows/CVI Instrument Driver Guide

Glossary

Prefix Meaning Value

p-
n-
µ-
m-
k-
M-

pico-
nano-
micro-
milli-
kilo-

mega-

10-12

10-9

10-6

10-3

103

106

A

ANSI American National Standards Institute

B

binary A function panel control that operates like a mechanical on/off switch. A
control binary control specifies a parameter value to be one of two predefined

values, depending upon whether the control is in the up or down position.

C

common A function panel control that specifies the first parameter in every
control function, primary and secondary, associated with a function panel. When

a function panel has a common control, secondary functions have two
parameters, the second of which is specified by a secondary control.

control An input and output device that appears on a function panel for specifying
function parameters and displaying function results.

E

external module A .lib , .obj , or .dll file that can be loaded and executed.

Glossary

LabWindows/CVI Instrument Driver Guide G-2 © National Instruments Corporation

F

.fp file A file containing information that allows the LabWindows/CVI interactive
program to display function panels that correspond to a specific instrument
driver.

function panel A user interface to the LabWindows/CVI libraries that allows interactive
execution of library functions and is capable of generating code for
inclusion in a program.

Function Panel The window used to create and modify instrument driver function panels.
Editor

function tree The hierarchical structure that defines the way functions in an instrument
driver are grouped.

Function Tree The window used to create and modify the function tree for an instrument
Editor driver.

G

Generated A small window located at the bottom of the function panel that displays
Code window the code produced by the manipulation of function panel controls.

global variable A function panel control that displays the value of a global variable
control defined in LabWindows/CVI at the time the function panel is operated.

H

Hz hertz

hex hexadecimal

I

in. inches

include file A file that contains function declarations, constant definitions, and
external declaration of global variables exported by the instrument driver.

Glossary

© National Instruments Corporation G-3 LabWindows/CVI Instrument Driver Guide

input control A function panel control in which a value or variable name is entered from
the keyboard.

instrument A set of routines designed to control an instrument, and a set of data
driver structures to represent the driver within LabWindows/CVI.

Instrument Library A LabWindows/CVI library that contains instrument drivers.

K

ksamples 1,000 samples

M

MB megabytes of memory

message control A function panel control that serves as a documentation tool that allows
you to place text on a function panel.

N

numeric control A function panel control that allows you to specify a numeric value using
the mouse.

O

output control A function panel control that displays the value of an output parameter
after the function is called.

P

primary control A function panel control that specifies parameters in the primary function.

primary function The function that performs the main task associated with a function panel.
The primary function always appears in the Generated Code window and
is always executed when Go is selected from the command bar of a
function panel.

primary parameter A parameter that becomes a formal parameter to the function call.

Glossary

LabWindows/CVI Instrument Driver Guide G-4 © National Instruments Corporation

pt points

pts/s points per second

R

return value control A function panel control that displays a value returned from the primary
function.

return value error The method used to declare each instrument driver routine as an integer
reporting method function and return the appropriate value.

ring control A control that displays a list of options one option at a time.

S

s seconds

secondary control A function panel control that specifies the parameter in a secondary
function. Each secondary control is associated with a different secondary
function, as opposed to primary controls, which are associated with the
same function.

secondary function A function that performs a task that is complementary to, but not required
by, the primary task. Secondary functions do not appear in the Generated
Code window unless you specifically activate them.

secondary A parameter that becomes a parameter to a separate function.
parameter

s/pt seconds per point

slide control A function panel control that resembles a mechanical slide switch; it
inserts a parameter value depending upon the position of the cross-bar on
the slide control.

V

V volts

value parameter An integer, long, or double-precision scalar parameter whose value is not
modified by the subroutine or function. In other words, an integer, long,
single-precision, or double-precision scalar parameter is a value parameter
if and only if its function panel control is not an output control.

© National Instruments Corporation I-1 LabWindows/CVI Instrument Driver Guide

Index

A

action/status functions, 1-9
Align Horizontal Centers command, Edit

menu, 4-5
Alignment command, Edit menu, 4-5
Any Array data type, 2-6
Any Type data type, 2-6
application functions

PREFIX_init and PREFIX_close
functions not called by (note), 1-10

purpose and use, 1-9 to 1-10
architecture. See instrument driver

architecture.
array data types, user-defined, 2-8
Attach and Edit Source command, Edit

Instrument dialog box, 3-8

B

Binary command, Create menu, 4-11 to 4-12
binary controls

control label, 4-11
Create Binary Control dialog box

available items, 4-11
creating function window

(example), 4-24, 4-26
creating, 4-11 to 4-12, 4-24
data type, 4-11
default value, 4-11
definition, 4-11
Edit Binary Control dialog box, 8-5
Edit On/Off Settings dialog box

available items, 4-12
creating function window

(example), 4-24
Edit On/Off Settings dialog

box, 4-27
GPIB instrument driver example, 8-5

Instrument Handle control example, 8-4
to 8-5

parameter position, 4-11
bulletin board support, B-1

C

Change Control Type command, Edit
menu, 4-5

Change Input Control Type dialog box, 4-28
Check for Valid ViBoolean Parameter utility

function, 6-3
Check for Valid ViInt16 Parameter utility

function, 6-3
Check for Valid ViInt32 Parameter utility

function, 6-3
Check for Valid ViReal64 Parameter utility

function, 6-3
Class command, Create menu, 3-5
classes. See under function trees.
close function for instrument drivers

definition, 1-9
PREFIX_close, 7-4
RS-232 instruments, 6-17

common control panel, 4-6
configuration functions, 1-8
Configure function example

creating function panel window, 8-4
to 8-10

writing, 8-17 to 8-18
Control Help command, Edit menu, 4-6
Copy command, Edit menu, 3-3
Copy Controls command, Edit menu, 4-4
Copy Panel command, Edit menu, 4-4
copying and pasting

help text, 5-9 to 5-10
utility routines, 6-5 to 6-6

core instrument driver. See instrument
drivers, programming.

Index

LabWindows/CVI Instrument Driver Guide I-2 © National Instruments Corporation

Create Binary Control dialog box
available options, 4-11
creating function window

(example), 4-24, 4-26
Edit On/Off Settings dialog box, 4-12
illustration, 4-12

Create Distribution Kit dialog box, USER:
3-22 to 3-27

Create Dynamic Link Library dialog
box, 3-10 to 3-11

Create Global Variable Control dialog box,
4-18 to 4-19

Create Input Control dialog box
available options, 4-7 to 4-8
creating function window

(example), 4-25
illustration, 4-7

Create menu
Function Panel Editor, 4-6 to 4-19. See

also function panel controls.
available controls (figure), 4-7
Binary command, 4-11 to 4-12
Global Variable command, 4-18

to 4-19
Input command, 4-7 to 4-8
Message command, 4-19
Numeric command, 4-15 to 4-16
Output command, 4-17
Return Value command, 4-18
Ring command, 4-12 to 4-14
Slide command, 4-8 to 4-10

Function Tree Editor
available options, 3-4
Class command, 3-5
Function Panel Window command,

3-5 to 3-6
Instrument command, 3-4

Create Numeric Control dialog box, 4-15
to 4-16

Create Output Control dialog box, 4-17
Create Return Value Control dialog

box, 4-18
Create Ring Control dialog box, 4-12

to 4-13

Create Slide Control dialog box
available options, 4-8 to 4-9
creating function window example, 4-25
Edit Label/Value Pairs dialog box, 4-9

to 4-10
illustration, 4-8

customer communication, xv, B-1 to B-2
Cut command, Edit menu, 3-3
Cut Controls command, Edit menu, 4-4
Cut Panel command, Edit menu, 4-4
cutting and pasting

controls (example), 4-29 to 4-30
functions and panels (example), 3-13

to 3-14

D

data functions, instrument drivers, 1-9
data types, 2-4 to 2-12

defining in header files (note), 4-20
instrument driver data types

overview, 6-7
table, 6-8

intrinsic C data types, 2-5
meta data types, 2-5 to 2-7

Any Array, 2-6
Any Type, 2-6
definition, 2-5
Numeric Array, 2-6
Var Args, 2-7

predefined data types, 2-4 to 2-7
purpose and use, 2-4
user-defined, 2-7 to 2-8

array data types, 2-8
creating, 2-7 to 2-8

VISA data types
how to use, 2-9
list of types (table), 2-9, 6-8
purpose and use, 1-3, 2-8 to 2-9, 6-7

Data Types command, Options menu, 4-20
to 4-21

Default Panel Size command, Options
menu, 4-21

Index

© National Instruments Corporation I-3 LabWindows/CVI Instrument Driver Guide

Detach Program command, Edit Instrument
dialog box, 3-8

developing instrument drivers. See
instrument drivers, programming.

Distribute Vertical Centers command, Edit
menu, 4-5 to 4-6

Distribution command, Edit menu, 4-5
DLLs. See Microsoft Windows DLLs.
documentation

conventions used in manual, xiv-xv
LabWindows/CVI documentation set, xv
organization of manual, xiii-xiv

documentation for instrument driver
writing, 2-12, 6-13 to 6-17

.doc file, 6-16 to 6-17
online help examples, 6-13 to 6-16

Done command, Edit Instrument Dialog
box, 3-8

E

Edit Binary Control dialog box, 8-5
Edit command, Instrument menu, 3-8. See

also Edit Instrument dialog box.
Edit Control command, Edit menu, 4-4
Edit Function command, Edit menu, 4-5
Edit Function Panel Window command

Edit menu, 3-3, 4-1
Options menu, 4-1

Edit Function Tree command
Edit Instrument dialog box, 3-8
Options menu, 4-21

Edit Help command, Edit menu, 3-3
Edit Instrument dialog box

available options, 3-8
illustration, 3-8

Edit Label/Value Pairs dialog box
adding label and value

ring control list, 4-14
slide control list, 4-10

available options, 4-9
changing control type (example), 4-28
command buttons

ring controls, 4-14
slide controls, 4-10

illustration
ring controls, 4-13
slide controls, 4-9

instrument driver example, 8-7
positioning control (example), 4-26

Edit menu
Function Panel Editor, 4-3 to 4-6

Align Horizontal Centers
command, 4-5

Alignment command, 4-5
available options, 4-3
Change Control Type command, 4-5
Control Help command, 4-6
Copy Controls command, 4-4
Copy Panel command, 4-4
Cut Controls command, 4-4
Cut Panel command, 4-4
Distribute Vertical Centers

command, 4-5 to 4-6
Distribution command, 4-5
Edit Control command, 4-4
Edit Function command, 4-5
Function Help command, 4-6
Paste command, 4-4
Window Help command, 4-6

Function Tree Editor, 3-3 to 3-4
Help Editor dialog box, 5-3

Edit Node command, Edit menu, 3-3
Edit On/Off Settings dialog box

available settings for binary
controls, 4-12

creating function window
(example), 4-24, 4-27

instrument driver programming
example, 8-5

Edit Ring Control dialog box, 8-6, 8-8
Edit Value Set dialog box, 4-16
editing help information, 5-2 to 5-4
electronic support services, B- to B-2
e-mail support, B-2
Error control example, 8-9, 8-13 to 8-14
error help for instrument drivers, 6-16, 8-9
error message function

definition, 1-9
PREFIX_error_message, 7-9

error query function

Index

LabWindows/CVI Instrument Driver Guide I-4 © National Instruments Corporation

definition, 1-9
PREFIX_error_query, 7-7 to 7-8

error reporting, 6-10 to 6-12
completion and warning codes

(table), 6-11
error codes (table), 6-11
error values (table), 6-10

example programs
instrument drivers. See instrument driver

programming example.
Tektronix 2430A sample code, A-1

to A-9
external interface model. See under

instrument driver architecture.

F

fax and telephone support, B-2
FaxBack support, B-1
File menu

Function Panel Editor, 4-3
Function Tree Editor, 3-3
Help Editor dialog box, 5-3

Fluke 8840a Digital Multimeter utility
functions (note), 6-3

Fmt function, in portable instrument
drivers, 6-9

FP Auto-Load List command, Edit
menu, 3-3 to 3-4

FTP support, B-2
function classes. See under function trees.
Function Help command, Edit menu, 4-6
function panel controls

adding help, 4-6
alignment commands

Align Horizontal Centers
command, 4-5

Alignment command, 4-5
binary, 4-11 to 4-12, 4-24
changing control type

Change Control Type command, 4-5
Change Input Control Type dialog

box, 4-28
example, 4-27 to 4-29

common control panel, 4-6

copying, 4-4
cutting and pasting (example), 4-29

to 4-30
distribution commands

Distribute Vertical Centers
command, 4-5 to 4-6

Distribution command, 4-5
example instrument driver

Error control, 8-9, 8-13 to 8-14
Instrument Handle control, 8-4 to 8-5
return value control, 8-9, 8-13
ring control, 8-6 to 8-9
Sample Period control, 8-12
Trigger Offset control, 8-13
Waveform Array control, 8-11

to 8-12
global variable, 4-18 to 4-19
help information, 5-6, 6-15
input, 4-7 to 4-8, 4-25
message, 4-19
moving, 4-22
numeric, 4-15 to 4-16
output, 4-17
removing (cutting), 4-4
return value, 4-18
ring, 4-12 to 4-14
slide, 4-8 to 4-10, 4-25
types of controls (figure), 4-7

Function Panel Editor
available menus, 4-2 to 4-3
Create menu, 4-6 to 4-19
Edit menu, 4-3 to 4-6
examples

changing control type, 4-27 to 4-29
creating function window, 4-23

to 4-27
cutting and pasting controls, 4-29

to 4-30
File menu, 4-3
illustration, 4-2
Instrument menu, 4-19
invoking, 4-1
items in Function Panel Editor, 4-2
Options menu, 4-20 to 4-22
View menu, 4-19
Window menu, 4-20

Index

© National Instruments Corporation I-5 LabWindows/CVI Instrument Driver Guide

Function Panel Window command, Create
menu, 3-5 to 3-6

Function Panel windows
creating (example), 4-23 to 4-27
definition, 4-6
illustration, 4-27

function panels. See also function panel
controls; interactive developer interface.

building for instrument drivers, 2-11
common control panel, 4-6
copying, 4-4
creating function window (example),

4-23 to 4-27
cutting and pasting (example), 3-13

to 3-14
definition, 4-6
determining movability, 4-21
help information, 6-15

adding, 4-6
example, 5-8 to 5-9

converting old style help to new
style, 3-9

new style help only, 5-5
old style help only, 5-5

instrument driver example
Configure function panel window,

8-4 to 8-10
Read Waveform function panel, 8-10

to 8-14
invoking Function Panel Editor, 4-1
moving controls, 4-22
operating, 4-22
programming considerations, 6-12
removing (cutting), 4-4
setting default size, 4-21
toggling scroll bars, 4-21

Function Tree Editor
available menus, 3-2
Create menu, 3-4 to 3-6
Edit menu, 3-3 to 3-4
examples

cutting and pasting functions and
panels, 3-13 to 3-14

editing items in function tree, 3-14
to 3-15

multiple classes in function tree,
3-12 to 3-13

File menu, 3-3
Instrument menu, 3-6 to 3-8
invoking, 3-1
invoking Function Panel Editor, 4-1
Options menu, 3-9 to 3-11
Window menu, 3-9

Function Tree Editor window (figure), 3-2
Function Tree (*.fp) option, 3-12
Function Tree option, New command or

Open command, 3-1
function trees

adding help information (example), 5-6
to 5-8

adding new functions, 3-5 to 3-6
building for instrument drivers, 2-11, 3-4
classes

adding new classes, 3-5
creating multiple classes (example),

3-12 to 3-13
help information, 5-4 to 5-5, 6-14
inserting into existing tree, 3-5
number of functions and classes

allowed (note), 3-5
cutting and pasting functions and panels

(example), 3-13 to 3-14
definition, 3-1
grouping functions hierarchically, 6-12

to 6-13
illustration, 6-12
instrument driver example

adding new functions, 8-3 to 8-4
Configure function panel window,

creating, 8-4 to 8-10
creating function tree, 8-2 to 8-4
modifying instrument name, 8-2

to 8-3
Read Waveform function panel,

creating, 8-10 to 8-14
number of functions and classes allowed

(note), 3-5
functional body

definition, 1-4
purpose and use, 1-5

Index

LabWindows/CVI Instrument Driver Guide I-6 © National Instruments Corporation

G

Generate DLL Make File command, Options
menu, 3-9

Generate Documentation command, Options
menu, 3-9

Generate Function Prototypes command,
Options menu, 3-9

Generate ODL File command, Options
menu, 3-10

Generate Windows Help command, Options
menu, 3-9

Global Variable command, Create
menu, 4-18 to 4-19

global variable controls, 4-18 to 4-19
control label, 4-19
control width, 4-19
Create Global Variable Control dialog

box, 4-18 to 4-19
data type, 4-19
definition, 4-18
display format, 4-19
global variable name, 4-19

GPIB instruments
core instrument driver files (table), 6-4
programming example, 8-1 to 8-20

Configure function, writing, 8-17
to 8-18

Configure Function Panel window,
creating, 8-4 to 8-10

creating the program, 8-15 to 8-20
function tree, creating, 8-2 to 8-4
include statements, adding, 8-20
modifying CORE_GPB.C source

file, 8-15 to 8-16
modifying CORE_GPB.H include

file, 8-16 to 8-17
Read Waveform function, writing, 8-

18 to 8-19
Read Waveform function panel,

creating, 8-10 to 8-14
testing the driver, 8-20
variable declarations, adding, 8-20
writing new functions, 8-17

H

Help Editor dialog box, 5-3 to 5-4
Edit menu, 5-4
File menu, 5-3
illustration, 5-3
Window menu, 5-4

help information, 5-1 to 5-10
controls, 4-6, 5-6, 6-15
editing, 5-2 to 5-4
error help, 6-16
examples

adding help in Function Panel Editor,
5-8 to 5-9

adding help in Function Tree Editor,
5-6 to 5-8

copying and pasting help text, 5-9
to 5-10

instrument drivers, 6-13 to 6-14, 8-4
function classes, 5-4 to 5-5, 6-14
function panels

converting old style help to new
style, 3-9

example, 6-15
new style help only, 5-5
old style help only, 5-5
selecting old style or new style

help, 4-6
generating files for Windows Help

Compiler, 3-9
Help Editor dialog box, 5-3
instrument drivers

adding, 5-4
example, 6-13 to 6-14, 8-4

new style vs. old style help, 3-9, 5-1
status help, 6-16
types of help (table), 5-2

Help Style command, Options menu, 3-9

Index

© National Instruments Corporation I-7 LabWindows/CVI Instrument Driver Guide

I

initialization routine, RS-232
instruments, 6-17

initialize function for instrument drivers
definition, 1-8
generic nature of, 1-3
PREFIX_init, 7-2 to 7-4

input and output parameters for instrument
drivers, 2-9 to 2-10

Input command, Create menu, 4-7 to 4-8
input controls

control label, 4-7
control width, 4-8
Create Input Control dialog box, 4-7

to 4-8, 4-25
creating, 4-7 to 4-8, 4-25
data type, 4-8
default value, 4-8
definition, 4-7
parameter position, 4-7 to 4-8

Instrument command, Create menu, 3-4
instrument driver architecture, 1-3 to 1-10

external interface model, 1-4 to 1-6
functional body, 1-5
general model (illustration), 1-4
interactive developer interface, 1-7
programmatic developer

interface, 1-6
subroutine interface, 1-5
VISA I/O interface, 1-5

internal design model, 1-7 to 1-9
action/status functions, 1-9
application functions, 1-9 to 1-10
close function, 1-9
component functions, 1-7 to 1-8
configuration functions, 1-8
data functions, 1-9
illustration, 1-7
initialize function, 1-8
utility functions, 1-9

instrument driver functions, 1-7 to 1-10
action/status, 1-9
adding to function tree, 3-5 to 3-6

creating multiple classes (example),
3-12 to 3-13

empty tree or class, 3-6
existing tree, 3-6

application functions, 1-9 to 1-10
close, 1-9
configuration, 1-8
cutting and pasting functions and panels

(example), 3-13 to 3-14
data, 1-9
developer-specified, 1-7, 1-8
grouping hierarchically, 6-12 to 6-13
initialize, 1-8
naming, 3-5 to 3-6
required. See required functions for

instrument drivers.
user-callable functions, 6-4 to 6-5

macros for prototyping, 6-8 to 6-9
utility, 1-9

instrument driver programming example,
8-1 to 8-20. See also instrument drivers,
programming.

adding include statements, 8-20
creating function tree, 8-2 to 8-15

adding new functions, 8-3 to 8-4
binary channel control, adding, 8-5

to 8-6
creating Configure Function Panel

window, 8-4 to 8-10
Error control, adding, 8-9, 8-13

to 8-14
horizontal timebase control, adding,

8-7 to 8-8
Instrument Handle control, adding,

8-4 to 8-5
modifying instrument name, 8-2

to 8-3
Read Waveform function panel,

creating, 8-10 to 8-14
return value control,

adding, 8-9, 8-13
ring control, adding, 8-6 to 8-9
Sample Period control, adding, 8-12
Trigger Offset control, adding, 8-13
Waveform Array control, adding,

8-11 to 8-12
creating the instrument program, 8-15

to 8-20

Index

LabWindows/CVI Instrument Driver Guide I-8 © National Instruments Corporation

modifying CORE_GPB.C source file,
8-15 to 8-16

modifying CORE_GPB.H include file,
8-16 to 8-17

overview, 8-1
Tektronix 2430A sample code, A-1

to A-9
include file, A-1
source file, A-2 to A-9

testing the driver, 8-20
variable declarations, adding, 8-20
writing Configure function, 8-17 to 8-18
writing new functions, 8-17
writing Read Waveform function, 8-18

to 8-19
Instrument Driver Support Only command,

Build menu, 3-10
instrument drivers

files for instrument drivers, 1-1
help information, 5-4, 6-13 to 6-14
historical evolution, 1-3
operation of, 1-2, 2-11 to 2-12
purpose and use, 1-1, 1-2

instrument drivers, programming. See also
data types; function panels; instrument
driver programming example.

building function panels, 2-11
checklist, 6-18 to 6-19
core instrument driver

files for instrument drivers, 6-2
table, 6-4

modifying, 6-3 to 6-4
utility functions, 6-2 to 6-3

documentation guidelines, 6-13 to 6-17
.doc file, 6-16 to 6-17
online help, 6-13 to 6-16
writing, 2-12

error reporting guidelines, 6-10 to 6-12
function parameters

defining, 2-4
input and output parameters, 2-9

to 2-10
function tree

adding new classes, 3-5
adding new functions, 3-5 to 3-6
building, 2-11, 3-4

grouping functions hierarchically,
2-4, 6-12 to 6-13

functions
adding user-callable functions, 6-5

to 6-6
defining, 2-2 to 2-4
grouping hierarchically, 2-4, 6-12

to 6-13
return values, 2-10
structuring, 2-3 to 2-4
writing function code, 2-11

general guidelines, 2-1, 6-1 to 6-2
naming drivers, 2-2, 3-5 to 3-6
portable instrument drivers, 6-7 to 6-10

data types, 6-7 to 6-8
declaring array and output

parameters, 6-8 to 6-9
Scan and Fmt functions, 6-9 to 6-10

prefixes, 6-3 to 6-4
RS-232 instruments, 6-17
steps for programming, 2-1 to 2-2
testing instrument drivers, 2-12
tips for creating, 6-6 to 6-7
user-callable functions, 6-5 to 6-6
utility functions

copying and pasting, 6-5 to 6-6
list of functions for core instrument

drivers, 6-3
VXI instruments, 6-18

Instrument Handle control example, 8-4
to 8-5

Instrument Library, 1-1
Instrument menu

Function Panel Editor, 4-19
Function Tree Editor, 3-6 to 3-8

available options, 3-7
Edit command, 3-8
Load command, 3-7
Unload command, 3-7

interactive developer interface
definition, 1-4
purpose and use, 1-6

internal design model. See under instrument
driver architecture.

intrinsic C data types, 2-5

Index

© National Instruments Corporation I-9 LabWindows/CVI Instrument Driver Guide

L

Load command, Instrument menu, 3-7

M

macros, for prototyping user-callable
functions, 6-8 to 6-9

manual. See documentation.
Message command, Create menu, 4-19
message controls, 4-19
meta data types, 2-5 to 2-7

Any Array, 2-6
Any Type, 2-6
definition, 2-5
Numeric Array, 2-6
Var Args, 2-7

Microsoft Windows DLLs
Create DLL Project command, Options

menu, 3-10
Generate DLL Make Files command,

Options menu, 3-9
VXIplug&playStyle command, Options

menu, 3-10 to 3-11
models for instrument drivers. See

instrument driver architecture.
moving controls, 4-22

N

names
functions for instrument drivers, 3-5

to 3-6
instrument drivers, 2-2, 3-5 to 3-6

New command, File menu, 3-1
Numeric Array data type, 2-6
Numeric command, Create menu, 4-15

to 4-16
numeric controls

control label, 4-15
Create Numeric Control dialog box, 4-15

to 4-16
creating, 4-15 to 4-16
data type, 4-15

default value, 4-16
definition, 4-15
display format, 4-16
Edit Value Set dialog box, 4-16
increment and decrement values, 4-16
maximum value, 4-16
minimum value, 4-16
parameter position, 4-15

O

Object Description Language (.odl) file,
generating, 3-10

ODL file, generating, 3-10
online help. See help information.
Open command, File menu, 3-1
Operate Function Panel command, Options

menu, 4-22
Options menu

Function Panel Editor, 4-20 to 4-22
Data Types command, 4-20 to 4-21
Default Panel Size command, 4-21
Edit Data Type List dialog box, 4-20

to 4-21
Edit Function Tree command, 4-21
Operate Function Panel

command, 4-22
Panels Movable command, 4-21
Toggle Scroll Bars command, 4-21
Toolbar command, 4-21

Function Tree Editor, 3-9 to 3-11
Create DLL Project command, 3-10
Generate DLL Make File

command, 3-9
Generate Documentation

command, 3-9
Generate Function Prototypes

command, 3-9
Generate ODL File command, 3-10
Generate Windows Help

command, 3-9
Help Style command, 3-9
Transfer Window Help to Function

Help command, 3-9

Index

LabWindows/CVI Instrument Driver Guide I-10 © National Instruments Corporation

VXIplug&playStyle command, 3-10
to 3-11

Oscilloscope, sample. See instrument driver
programming example.

Output command, Create menu, 4-17
output controls, 4-17

control label, 4-17
control width, 4-17
Create Output Control dialog box, 4-17
data type, 4-17
definition, 4-17
display format, 4-17
parameter position, 4-17

P

Panels Movable command, Options
menu, 4-21

parameters for instrument drivers. See also
data types.

defining, 2-4
input and output parameters, 2-9 to 2-10

Paste Above command, Edit menu, 3-3
Paste Below command, Edit menu, 3-3
Paste command, Edit menu, 4-4
pasting

controls (example), 4-29 to 4-30
functions and panels (example), 3-13

to 3-14
help text, 5-9 to 5-10
utility routines, 6-5 to 6-6

prefix for instrument driver names, 2-2
PREFIX_close function

not called by instrument driver
application functions (note), 1-10

purpose and use, 7-4
PREFIX_error_message function, 7-9
PREFIX_error_query function, 7-7 to 7-8
PREFIX_init function

not called by instrument driver
application functions, 1-10

purpose and use, 7-2 to 7-4
PREFIX_reset function, 7-5
PREFIX_revision function, 7-10 to 7-11
PREFIX_self_test, 7-6 to 7-7

programmatic developer interface
definition, 1-4
purpose and use, 1-6

programming examples. See example
programs.

programming instrument drivers. See
instrument drivers, programming.

R

Read Waveform function example
creating function panel, 8-10 to 8-14
writing, 8-18 to 8-19

Reattach Program command, Edit
Instrument dialog box, 3-8

required functions for instrument drivers
list of functions, 1-8, 2-10, 7-1
PREFIX_close, 7-4
PREFIX_error_message, 7-9
PREFIX_error_query, 7-7 to 7-8
PREFIX_init, 7-2 to 7-4
PREFIX_reset, 7-5
PREFIX_revision, 7-10 to 7-11
PREFIX_self_test, 7-6 to 7-7

reset function
definition, 1-9
PREFIX_reset, 7-5

Return Value command, Create menu, 4-18
return value controls, 4-18

control label, 4-18
control width, 4-18
Create Return Value Control dialog

box, 4-18
data type, 4-18
definition, 4-18
display format, 4-18
example instrument driver, 8-9, 8-13

return values, instrument driver
functions, 2-10

revision query function
definition, 1-9
PREFIX_revision, 7-10 to 7-11

Ring command, Create menu, 4-12 to 4-14
ring controls. See also Edit Label/Value

Pairs dialog box.

Index

© National Instruments Corporation I-11 LabWindows/CVI Instrument Driver Guide

adding label and value to ring control
list, 4-14

control label, 4-13
control width, 4-13
Create Ring Control dialog box, 4-12

to 4-13
creating, 4-12 to 4-14
data type, 4-13
default value, 4-13
definition, 4-12
Edit Label/Value Pairs dialog box, 4-13

to 4-14, 8-7
Edit Ring Control dialog box, 8-6, 8-8
example instrument driver, 8-6 to 8-9
parameter position, 4-13

RS-232 instruments
core instrument driver files (table), 6-4
programming guidelines

close routine, 6-17
initialization routine, 6-17
utility routines, 6-17

S

Sample Oscilloscope program. See
instrument driver programming example.

Sample Period control (example), 8-12
sample programs. See example programs.
Scan function, in portable instrument

drivers, 6-9 to 6-10
self-test function. See PREFIX_self_test.
Show Info command, Edit Instrument dialog

box, 3-8
Slide command, Create menu, 4-8 to 4-10
slide controls

adding labels and values to slide control
list, 4-10

control label, 4-8
Create Slide Control dialog box, 4-8

to 4-9, 4-25
creating, 4-8 to 4-10, 4-25
data type, 4-9
default value, 4-9
definition, 4-8

Edit Label/Value Pairs dialog box, 4-9
to 4-10, 4-26, 4-28

parameter position, 4-8 to 4-9
status help for instrument drivers, 6-16
subroutine interface

definition, 1-4
purpose and use, 1-5

T

technical support, B-1 to B-2
Tektronix 2430A sample code, A-1 to A-9

include file, A-1
source file, A-2 to A-9

testing instrument drivers, 2-12, 8-20
Toggle Scroll Bars command, Options

menu, 4-21
Toolbar command, Options menu, 4-21
Transfer Window Help to Function Help

command, Options menu, 3-9
Trigger Offset control example, 8-13

U

Unload command, Instrument menu, 3-7
user-callable functions, 6-5 to 6-6

macros for prototyping, 6-8 to 6-9
user-defined data types, 2-7 to 2-8

array data types, 2-8
creating, 2-7 to 2-8
VISA data types, 2-9
VISA data types (table), 6-8

utility functions for instrument drivers
copying and pasting, 6-5 to 6-6
list of functions, 6-3
RS-232 instruments, 6-17
types of, 1-9

Index

LabWindows/CVI Instrument Driver Guide I-12 © National Instruments Corporation

V

Var Args data type, 2-7
VIBoolean data type (table), 2-9, 6-8
VIBoolean[] data type (table), 2-9, 6-8
VIChar[] data type (table), 2-9, 6-8
VI_ERROR_INV_RESPONSE error

code, 6-11
View menu, Function Panel Editor, 4-19
_VI_FAR macro, 6-8
_VI_FUNC macro, 6-8
VIInt16 data type (table), 2-9, 6-8
VIInt16[] data type (table), 2-9, 6-8
VIInt32 data type (table), 2-9, 6-8
VIInt32[] data type (table), 2-9, 6-8
VIReal64 data type (table), 2-9, 6-8
VIReal64[] data type (table), 2-9, 6-8
VIRsrc data type (table), 2-9, 6-8
Virtual Instrumentation Software

Architecture. See VISA I/O interface.
VISA data types

how to use, 2-9
list of types (table), 2-9, 6-8
purpose and use, 1-3, 2-8 to 2-9, 6-7

VISA I/O interface
data types, 1-3
definition, 1-4
purpose and use, 1-5

VISession data type (table), 2-9, 6-8
VIStatus data type (table), 2-9, 6-8
VXI instruments

core instrument driver files (table), 6-4
programming guidelines, 6-18

VXI plug&play instrument driver, 1-4
VXIplug&playStyle command, Options

menu, 3-10 to 3-11
default settings

Advanced dialog box, 3-11
Create Distribution Kit dialog

box, 3-11
Create Dynamic Link Library dialog

box, 3-10 to 3-11
Instrument Driver Support Only

command, 3-10
effects on DLL project, 3-10

W

Waveform Array control example, 8-11
to 8-12

Window Help command, Edit menu, 4-6
Window menu

Function Panel Editor, 4-20
Function Tree Editor, 3-9
Help Editor dialog box, 5-4

writing instrument drivers. See instrument
drivers, programming.

	LabWindows/CVI Instrument Driver Developers Guide
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Table of Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	The LabWindows/CVI Documentation Set
	Customer Communication

	Chapter 1 Instrument Driver Overview
	About the Instrument Library and Instrument Drivers
	How Users Operate the Instrument Driver
	Purpose and Benefits of Instrument Drivers
	Historical Evolution of Instrument Drivers
	Instrument Driver Architecture
	Instrument Driver External Interface Model
	Functional Body
	VISA I/O Interface
	Subroutine Interface
	Programmatic Developer Interface
	Interactive Developer Interface
	Instrument Driver Internal Design Model
	Component Functions
	Initialize Function
	Configuration Functions
	Action/Status Functions
	Data Functions
	Utility Functions
	Close Function
	Application Functions

	Chapter 2 Developing an Instrument Driver
	General Guidelines
	Writing an Instrument Driver
	Naming the Driver
	Defining the Instrument Functions
	Structuring Functions In An Instrument Driver
	Defining the Hierarchy of Functions
	Defining the Function Parameters
	Data Types
	Predefined Data Types
	Intrinsic C Data Types
	Meta Data Types
	Numeric Array
	Any Array
	Any Type
	Var Args
	User-Defined Data Types
	Creating a User-Defined Data Type
	User-Defined Array Data Types
	VISA Data Types
	Input and Output Parameters
	Return Values
	Required Instrument Driver Functions
	Building the Function Tree
	Building the Function Panels
	Writing the Function Code
	Operating the Driver
	Testing the Instrument Driver
	Documenting the Driver

	Chapter 3 Function Tree Editor
	About the Function Tree and Function Tree Editor
	Function Tree Editor Menu Bar
	File
	Edit
	Create
	Instrument...
	Class
	Adding a Class to an Empty Tree or Class
	Inserting a Class into an Existing Tree
	Function Panel Window...
	Adding a Function to an Empty Tree or Class
	Inserting a Function into an Existing Tree
	Instrument
	Load...
	Unload...
	Edit...
	Window
	Options
	Function Tree Editor Examples
	Example—Multiple Classes in a Function Tree
	Example—Cutting and Pasting Functions and Panels
	Using Existing Function Panels In a New Driver
	Example—Editing Items in the Function Tree

	Chapter 4 Function Panel Editor
	Invoking the Function Panel Editor
	Invoking from the Function Tree Editor
	Invoking from a Function Panel
	The Function Panel Editor Menu Bar
	File
	Edit
	Cut Controls
	Copy Controls
	Paste
	Cut Panel
	Copy Panel
	Edit Control...
	Change Control Type...
	Edit Function...
	Alignment
	Align Horizontal Centers
	Distribution
	Distribute Vertical Centers
	Control Help
	Function Help or Window Help
	Create
	Function Panel Window, Function Panel, and Common Control Panel
	Control Types
	Input...
	Slide...
	Adding a Label and Value to the Slide Control List
	Dialog Box Command Buttons
	Binary...
	Ring...
	Adding a Label and Value to the Ring Control List
	Dialog Box Command Buttons
	Numeric...
	Output...
	Return Value...
	Global Variable...
	Message...
	View
	Instrument
	Window
	Options
	Data Types...
	Toolbar...
	Default Panel Size
	Panels Movable
	Toggle Scroll Bars
	Edit Function Tree
	Operate Function Panel
	Moving Controls
	Moving Controls between Function Panels
	Selecting Multiple Controls
	Function Panel Editor Examples
	Example—Creating a Function Window
	Example—Changing Control Type
	Example—Cutting and Pasting Controls

	Chapter 5 Adding Help Information
	New Style vs. Old Style Help
	Help Options
	Editing Help Information
	File
	Edit
	Window
	Instrument Help
	Function Class Help
	Function Help (New Style Help Only)
	Function Panel Window Help (Old Style Help Only)
	Control Help
	Help Information Examples
	Example—Adding Help Information in the Function Tree Editor
	Example—Adding Help Information in the Function Panel Editor
	Example—Copying and Pasting Help Text

	Chapter 6 Programming Guidelines for Instrument Drivers
	General Programming Guidelines
	The Core Instrument Driver
	Modifying the Core Driver
	Adding User Callable Functions
	Copy and Paste
	Tips for Creating an Instrument Driver
	Developing Portable Instrument Drivers
	Instrument Driver Data Types
	Declaring Instrument Driver Functions and Array and Output Parameters
	Using Scan and Fmt Functions
	Error Reporting Guidelines
	Function Panels
	Function Tree Hierarchy
	Documentation Guidelines
	Online Help
	The .doc File
	Programming Guidelines for RS-232 Instruments
	Initialization Routine
	Close Routine
	Utility Routines
	Programming Guidelines for VXI Instruments
	Instrument Driver Checklist

	Chapter 7 Required Instrument Driver Functions
	PREFIX_init
	PREFIX_close
	PREFIX_reset
	PREFIX_self_test
	PREFIX_error_query
	PREFIX_error_message
	PREFIX_revision

	Chapter 8 Instrument Driver Example
	Example—Creating a GPIB Instrument Driver
	Creating the Function Tree
	Creating the Configure Function Panel Window
	Creating the Read Waveform Function Panel
	Creating the Instrument Program
	Modifying CORE_GPB.C Source File
	Modifying the CORE_GPB.H Include File
	Writing the New Functions
	Writing the Configure Function
	Writing the Read Waveform Function
	Adding New Include Statements and Variable Declarations
	Testing the Driver

	Appendix A Tektronix 2430A Instrument Driver Code Sample
	Tektronix 2430A Instrument Driver Header File
	Tektronix 2430A Instrument Driver Source File

	Appendix B Customer Communication
	Glossary
	Index
	Figures
	Figure 1-1. Instrument Driver External Interface Model
	Figure 1-2. Instrument Driver Internal Design Mode
	Figure 3-1. A Function Tree
	Figure 3-2. The Edit Instrument Dialog Box
	Figure 3-3. A Sample Function Tree
	Figure 4-1. The Function Panel Editor
	Figure 4-2. Control Types
	Figure 4-3. The Create Input Control Dialog Box
	Figure 4-4. The Create Slide Control Dialog Box
	Figure 4-5. The Edit Label/Value Pairs Dialog Box
	Figure 4-6. The Create Binary Control Dialog Box
	Figure 4-7. The Edit On/Off Settings Dialog Box
	Figure 4-8. The Create Ring Control Dialog Box
	Figure 4-9. The Ring Control Edit Label/Value Pairs Dialog Box
	Figure 4-10. The Create Numeric Control Dialog Box
	Figure 4-11. The Edit Value Set Dialog Box
	Figure 4-12. The Create Output Control Dialog Box
	Figure 4-13. The Create Return Value Control Dialog Box
	Figure 4-14. The Create Global Variable Control Dialog Box
	Figure 4-15. The Edit Data Type List Dialog Box
	Figure 4-16. The Channel Create Binary Control Dialog Box
	Figure 4-17. The Channel Edit On/Off Settings Dialog Box
	Figure 4-18. The Volts/Div Create Input Control Dialog Box
	Figure 4-19. The Coupling Create Slide Control Dialog Box
	Figure 4-20. The Coupling Edit Label/Value Pairs Dialog Box
	Figure 4-21. The Invert Create Binary Control Dialog Box
	Figure 4-22. The Invert Edit On/Off Settings Dialog Box
	Figure 4-23. A Function Panel Window
	Figure 4-24. The Change Input Control Type Dialog Box
	Figure 4-25. The Volts/Div Edit Label/Value Pairs Dialog Box
	Figure 5-1. The Help Editor Dialog Box
	Figure 5-2. A Sample Function Tree
	Figure 6-1. The Fluke 45 Digital Multimeter Function Tree
	Figure 6-2. The Fluke 45 Instrument Help
	Figure 6-3. The Fluke 45 Function Class Help
	Figure 6-4. The Fluke 45 Function Panel Help
	Figure 6-5. The Fluke 45 Function Panel Control Help
	Figure 6-6. The Fluke 45 Function Panel Error Control Help
	Figure 8-1. The Function Tree for CORE_GPB.FP
	Figure 8-2. The New Function Tree for the Tektronix 2430A Instrument Driver
	Figure 8-3. The Edit Binary Control Dialog Box
	Figure 8-4. The Channel Edit On/Off Settings Dialog Box
	Figure 8-5. The Edit Ring Control Dialog Box for the Volts/Div Ring Control
	Figure 8-6. The Volts/Div Ring Control Edit Label/Value Pairs Dialog Box
	Figure 8-7. The Edit Ring Control Dialog Box
	Figure 8-8. The Edit Label/Value Pairs Dialog Box
	Figure 8-9. The Complete Configure Function Panel Window
	Figure 8-10. The Waveform Array Create Output Control Dialog Box
	Figure 8-11. The Sample Period Create Output Control Dialog Box
	Figure 8-12. The Trigger Offset Create Output Control Dialog Box
	Figure 8-13. The Complete Read Waveform Function Panel Window

	Tables
	Table 2-1. VISA Data Types.
	Table 5-1. Types of Help Information
	Table 6-1. Core Instrument Driver Files
	Table 6-2. VISA Data Types
	Table 6-3. VISA I/O Library Macros
	Table 6-4. Suggested Error Values
	Table 6-5. Instrument Driver Completion and Warning Codes
	Table 6-6. Instrument Driver Error Codes

